1
|
Mato M, Fernández-González X, D'Avino C, Tomás-Gamasa M, Mascareñas JL. Bioorthogonal Synthetic Chemistry Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202413506. [PMID: 39135347 DOI: 10.1002/anie.202413506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/17/2024]
Abstract
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools. The inherent mildness, tunability, chemoselectivity, and external controllability of photocatalytic transformations make them particularly well-suited for applications in biological and living systems. This minireview summarizes recent advances in bioorthogonal photocatalytic technologies, with a particular focus on their potential to enable the selective generation of designed products within biologically relevant or living settings.
Collapse
Affiliation(s)
- Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Xulián Fernández-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Cinzia D'Avino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Pal S, Openy J, Krzyzanowski A, Noisier A, ‘t Hart P. On-Resin Photochemical Decarboxylative Arylation of Peptides. Org Lett 2024; 26:2795-2799. [PMID: 37819674 PMCID: PMC11019635 DOI: 10.1021/acs.orglett.3c03070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Here we describe the application of photochemical decarboxylative arylation as a late-stage functionalization reaction for peptides. The reaction uses redox-active esters of aspartic acid and glutamic acid on the solid phase to provide analogues of aromatic amino acids. By using aryl bromides as arylation reagents, a wide variety of amino acids can be accessed without having to synthesize them individually in solution. The reaction is compatible with proteinogenic amino acids and was used to perform a structure-activity relationship study of a PRMT5 binding peptide.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| | - Joseph Openy
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| | - Adrian Krzyzanowski
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, 44227 Dortmund, Germany
| | - Anaïs Noisier
- Medicinal
Chemistry, Research and Early Development Cardiovascular, Renal and
Metabolism BioPharmaceutical R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Peter ‘t Hart
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Feng Y, Xu H, Fan Y, Ma F, Du B, Li Y, Xia R, Hou Z, Xin G. Effects of different monochromatic lights on umami and aroma of dried Suillus granulatus. Food Chem 2023; 404:134524. [DOI: 10.1016/j.foodchem.2022.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
4
|
Pan Y, Liu Z, Zou P, Chen Y, Chen Y. Hypervalent Iodine Reagents Enable C(sp 2)-H Amidation of (Hetero)arenes with Iminophenylacetic Acids. Org Lett 2022; 24:6681-6685. [PMID: 36043941 DOI: 10.1021/acs.orglett.2c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfonamide-containing (hetero)arenes are widely present in bioactive molecules. Here, we report the sulfonamidyl (hetero)arenes synthesis by the C(sp2)-H amidation from bench-stable amidyl-iminophenylacetic acids. The hypervalent iodine reagents covalently activated iminophenylacetic acids for the facile sulfonamidyl radical generation under mild photocatalytic oxidative conditions. Diversified indoles, pyrroles, imidazopyridines, and fused arenes underwent the C(sp2)-H amidation with excellent chemoselectivity and regioselectivity. This reaction performs well under neutral aqueous conditions with potential biological applications.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.,Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Peng Zou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Yali Chen
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210 China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
5
|
Zeng K, Han L, Chen Y. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light. Chembiochem 2022; 23:e202200244. [PMID: 35822393 DOI: 10.1002/cbic.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Indexed: 11/05/2022]
Abstract
The protein modulation by light illumination enables the biological role investigation in high spatiotemporal precision. Compared to genetic methods, the small molecules approach is uniquely suited for modulating endogenous proteins. The endogenous protein modulation in live cells with small molecules and light has recently advanced on three distinctive frontiers: i) the infrared-light-induced or localized decaging of small molecules by photolysis, ii) the visible-light-induced photocatalytic releasing of small molecules, and iii) the small-molecule-ligand-directed caging for photo-modulation of proteins. Together, these methods provide powerful chemical biology tool kits for spatiotemporal modulation of endogenous proteins with potential therapeutic applications. This Concept aims to inspire organic chemists and chemical biologists to delve into this burgeoning endogenous protein modulation field for new biological discoveries.
Collapse
Affiliation(s)
- Kaixing Zeng
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Lili Han
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Yiyun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, BNPC, 345 Lingling Road, 200032, Shanghai, CHINA
| |
Collapse
|
6
|
Zhang Y, Han L, Tian X, Peng C, Chen Y. Ligand‐Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells. Angew Chem Int Ed Engl 2022; 61:e202115472. [DOI: 10.1002/anie.202115472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lili Han
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Chao Peng
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
7
|
Zhang Y, Han L, Tian X, Peng C, Chen Y. Ligand‐Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lili Han
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Chao Peng
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
8
|
Liu Z, Wu S, Chen Y. Selective C(sp 3)-C(sp 3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
9
|
Wang H, Zhang Y, Zeng K, Qiang J, Cao Y, Li Y, Fang Y, Zhang Y, Chen Y. Selective Mitochondrial Protein Labeling Enabled by Biocompatible Photocatalytic Reactions inside Live Cells. JACS AU 2021; 1:1066-1075. [PMID: 34467350 PMCID: PMC8395695 DOI: 10.1021/jacsau.1c00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 06/01/2023]
Abstract
Biocompatible reactions are powerful tools to probe protein functions in their native environment. Due to the difficulty of penetrating the live-cell membrane and the complex intracellular environment, the biocompatible reactions inside live cells are challenging, especially at the subcellular level with spatial resolution. Here we report the first biocompatible photocatalytic azide conjugation reaction inside live cells to achieve the mitochondria-selective proteins labeling. The organic dyes acridine orange, fluorescein, and rhodamine 123 were developed as the biocompatible photocatalysts for the proteins labeling with aryl azides, which yielded benzazirines and ketenimines from triplet nitrenes for the protein nucleophilic residue trapping. The photocatalytic azide conjugation reaction with rhodamine 123 selectively labeled the mitochondrial proteins via the organic dye's mitochondrial localization. In response to the mitochondrial stress induced by rotenone, this photocatalytic azide-promoted labeling method mapped the dynamic mitochondrial proteome changes with high temporal-spatial precision and identified several potential mitochondrial stress-response proteins for the first time. The high temporal-spatial precision of this photocatalytic azide-promoted labeling method holds excellent potential for intracellular protein network investigations.
Collapse
Affiliation(s)
- Haoyan Wang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yixin Zhang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kaixing Zeng
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike
Road, Shanghai 201210, China
| | - Jiali Qiang
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai 201210, China
| | - Ye Cao
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai 201210, China
| | - Yanshan Fang
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Pudong, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai 201210, China
| | - Yiyun Chen
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike
Road, Shanghai 201210, China
- School
of
Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Le Du E, Garreau M, Waser J. Small peptide diversification through photoredox-catalyzed oxidative C-terminal modification. Chem Sci 2021; 12:2467-2473. [PMID: 34164012 PMCID: PMC8179259 DOI: 10.1039/d0sc06180h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
A photoredox-catalyzed oxidative decarboxylative coupling of small peptides is reported, giving access to a variety of N,O-acetals. They were used as intermediates for the addition of phenols and indoles, leading to novel peptide scaffolds and bioconjugates. Amino acids with nucleophilic side chains, such as serine, threonine, tyrosine and tryptophan, could also be used as partners to access tri- and tetrapeptide derivatives with non-natural cross-linking.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| |
Collapse
|
11
|
Qin L, Yuan X, Cui Y, Sun Q, Duan X, Zhuang K, Chen L, Qiu J, Guo K. Visible‐Light‐Mediated S−H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai‐Qiang Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
12
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020; 59:22514-22522. [DOI: 10.1002/anie.202010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
13
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
14
|
Chen C, Wang X, Yang T. Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis. Front Chem 2020; 8:551159. [PMID: 33173767 PMCID: PMC7539788 DOI: 10.3389/fchem.2020.551159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
The synergistic combination of visible-light-induced photoredox catalysis with hypervalent iodine(III) reagents (HIRs) represents a particularly important achievement in the field of hypervalent iodine chemistry, and numerous notable organic transformations were achieved in a mild and environmentally benign fashion. This account intends to summarize recent synthetic applications of HIRs in visible-light-induced photoredox catalysis, and they are organized in terms of the photochemical roles of HIRs played in reactions.
Collapse
Affiliation(s)
- Chaoyue Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Tinghai Yang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Li J, Kong H, Zhu C, Zhang Y. Photo-controllable bioorthogonal chemistry for spatiotemporal control of bio-targets in living systems. Chem Sci 2020; 11:3390-3396. [PMID: 34109018 PMCID: PMC8152734 DOI: 10.1039/c9sc06540g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
The establishment of bioorthogonal chemistry is one of the most significant advances in chemical biology using exogenous chemistry to perturb and study biological processes. Photo-modulation of biological systems has realized temporal and spatial control on biomacromolecules in living systems. The combination of photo-modulation and bioorthogonal chemistry is therefore emerging as a new direction to develop new chemical biological tools with spatiotemporal resolution. This minireview will focus on recent development of bioorthogonal chemistry subject to spatiotemporal control through photo-irradiation. Different strategies to realize photo-control on bioorthogonal bond-forming reactions and biological applications of photo-controllable bioorthogonal reactions will be summarized to give a perspective on how the innovations on photo-chemistry can contribute to the development of optochemical biology. Future trends to develop more optochemical tools based on novel photochemistry will also be discussed to envision the development of chemistry-oriented optochemical biology.
Collapse
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
16
|
Affiliation(s)
- Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| |
Collapse
|
17
|
Catalytic peroxygen activation by biosynthesized iron nanoparticles for enhanced degradation of Congo red dye. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
19
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019; 58:8182-8186. [DOI: 10.1002/anie.201901922] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
20
|
Li J, Liu Z, Wu S, Chen Y. Acyl Radical Smiles Rearrangement To Construct Hydroxybenzophenones by Photoredox Catalysis. Org Lett 2019; 21:2077-2080. [PMID: 30888188 DOI: 10.1021/acs.orglett.9b00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first visible-light-induced acyl radical Smiles rearrangement to transform biaryl ethers to hydroxybenzophenones under mild and metal-free conditions is reported. Using the dual catalysis of hypervalent iodine(III) reagents and organophotocatalysts, ketoacids readily generate acyl radicals and undergo 1,5- ipso addition. This method can construct electron-deficient and electron-rich hydroxybenzophenones with excellent chemoselectivity and on gram scale. The performance of the reaction in neutral aqueous conditions holds potential for future biomolecule applications.
Collapse
Affiliation(s)
- Junzhao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 China
| |
Collapse
|
21
|
Lobão JBDS, Gondim ACS, Guimarães WG, Gilles‐Gonzalez M, Lopes LGDF, Sousa EHS. Oxygen triggers signal transduction in the DevS (DosS) sensor of
Mycobacterium tuberculosis
by modulating the quaternary structure. FEBS J 2019; 286:479-494. [DOI: 10.1111/febs.14734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Josiane Bezerra da Silva Lobão
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Ana C. S. Gondim
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Wellinson G. Guimarães
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | | | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Eduardo H. S. Sousa
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| |
Collapse
|
22
|
Kaur S, Zhao G, Busch E, Wang T. Metal-free photocatalytic thiol–ene/thiol–yne reactions. Org Biomol Chem 2019; 17:1955-1961. [DOI: 10.1039/c8ob02313a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a metal-free photocatalytic approach to the synthesis of glycoconjugates, highlighting the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Gaoyuan Zhao
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Evan Busch
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Ting Wang
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
23
|
Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Visible light-driven organic photochemical synthesis in China. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9399-2] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wang H, Li W, Zeng K, Wu Y, Zhang Y, Xu T, Chen Y. Photocatalysis Enables Visible‐Light Uncaging of Bioactive Molecules in Live Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haoyan Wang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei‐Guang Li
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Kaixing Zeng
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yan‐Jiao Wu
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian‐Le Xu
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
25
|
Wang H, Li WG, Zeng K, Wu YJ, Zhang Y, Xu TL, Chen Y. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells. Angew Chem Int Ed Engl 2018; 58:561-565. [PMID: 30418695 DOI: 10.1002/anie.201811261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Indexed: 12/17/2022]
Abstract
The photo-manipulation of bioactive molecules provides unique advantages due to the high temporal and spatial precision of light. The first visible-light uncaging reaction by photocatalytic deboronative hydroxylation in live cells is now demonstrated. Using Fluorescein and Rhodamine derivatives as photocatalysts and ascorbates as reductants, transient hydrogen peroxides were generated from molecular oxygen to uncage phenol, alcohol, and amine functional groups on bioactive molecules in bacteria and mammalian cells, including neurons. This effective visible-light uncaging reaction enabled the light-inducible protein expression, the photo-manipulation of membrane potentials, and the subcellular-specific photo-release of small molecules.
Collapse
Affiliation(s)
- Haoyan Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei-Guang Li
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Kaixing Zeng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Yan-Jiao Wu
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tian-Le Xu
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
26
|
Jia K, Chen Y. Visible-light-induced alkoxyl radical generation for inert chemical bond cleavage/functionalization. Chem Commun (Camb) 2018; 54:6105-6112. [DOI: 10.1039/c8cc02642d] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advancements in inert C(sp3)–H, C(sp3)–C(sp3), and C(sp3)–X bond cleavage/functionalization by visible-light-induced alkoxyl radical generation are discussed.
Collapse
Affiliation(s)
- Kunfang Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Centre of Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Centre of Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Zhao G, Kaur S, Wang T. Visible-Light-Mediated Thiol–Ene Reactions through Organic Photoredox Catalysis. Org Lett 2017; 19:3291-3294. [DOI: 10.1021/acs.orglett.7b01441] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sarbjeet Kaur
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
28
|
A bioorthogonal nanosystem for imaging and in vivo tumor inhibition. Biomaterials 2017; 138:57-68. [PMID: 28554008 DOI: 10.1016/j.biomaterials.2017.05.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 01/08/2023]
Abstract
Bioorthogonal bond-cleavage reactions have emerged as promising tools for manipulating biological processes, still the therapeutic effect of these reactions in vivo needs to be explored. Herein a bioorthogonal-activated prodrug has been developed for bioimaging and therapy, which is composed of a Pd-mediated cleavable propargyl, a coumarin fluorophore and a potent anticancer drug. In vitro investigations show that, the presence of a Pd complex induces the cleavage of propargyl and subsequently trigger the cascade of reactions, thereby activating the coumarin fluorophore for imaging and releasing the anticancer drug for therapy. Both the prodrug and Pd complex were then separately encapsulated into phospholipid liposomes to form a two-component bioorthogonal nanosystem. The lyposomal nanosystem can be readily internalized by HeLa cells and displays strong intracellular fluorescence under one- or two-photon excitation, indicating the release of the active drug in cells as a result of the Pd-mediated bioorthogonal bond-cleavage reaction. More importantly, the nanosystem shows considerable high activity and exerts efficient inhibition towards tumor growth in a mouse model. This work demonstrates that, if properly formulated, a bioorthogonal system can perform well in vivo. This strategy may offer a new approach for designing bioorthogonal prodrugs with imaging and therapeutic capability.
Collapse
|
29
|
Ding W, Lu LQ, Liu J, Liu D, Song HT, Xiao WJ. Visible Light Photocatalytic Radical–Radical Cross-Coupling Reactions of Amines and Carbonyls: A Route to 1,2-Amino Alcohols. J Org Chem 2016; 81:7237-43. [DOI: 10.1021/acs.joc.6b01217] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wei Ding
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Liang-Qiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jing Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dan Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Hai-Tao Song
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
30
|
Li J, Chen PR. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 2016; 12:129-37. [PMID: 26881764 DOI: 10.1038/nchembio.2024] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/07/2016] [Indexed: 01/10/2023]
Abstract
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Collapse
Affiliation(s)
- Jie Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
31
|
Jia K, Zhang F, Huang H, Chen Y. Visible-Light-Induced Alkoxyl Radical Generation Enables Selective C(sp(3))-C(sp(3)) Bond Cleavage and Functionalizations. J Am Chem Soc 2016; 138:1514-7. [PMID: 26829105 DOI: 10.1021/jacs.5b13066] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alkoxyl radical is an important reactive intermediate in mechanistic studies and organic synthesis; however, its current generation from alcohol oxidation heavily relies on transition metal activation under strong oxidative conditions. Here we report the first visible-light-induced alcohol oxidation to generate alkoxyl radicals by cyclic iodine(III) reagent catalysis under mild reaction conditions. The β-fragmentation of alkoxyl radicals enables selective C(sp(3))-C(sp(3)) bond cleavage and alkynylation/alkenylation reactions with various strained cycloalkanols, and for the first time with linear alcohols.
Collapse
Affiliation(s)
- Kunfang Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Fuyuan Zhang
- School of Physical Science and Technology, Shanghai Tech University , 100 Haike Road, Shanghai 201210, China
| | - Hanchu Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, Shanghai Tech University , 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
32
|
Huang H, Zhang G, Chen Y. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions. Angew Chem Int Ed Engl 2015; 54:7872-6. [PMID: 26014919 DOI: 10.1002/anie.201502369] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/18/2022]
Abstract
A combination of hypervalent iodine(III) reagents (HIR) and photoredox catalysis with visible light has enabled chemoselective decarboxylative ynonylation to construct ynones, ynamides, and ynoates. This ynonylation occurs effectively under mild reaction conditions at room temperature and on substrates with various sensitive and reactive functional groups. The reaction represents the first HIR/photoredox dual catalysis to form acyl radicals from α-ketoacids, followed by an unprecedented acyl radical addition to HIR-bound alkynes. Its efficient construction of an mGlu5 receptor inhibitor under neutral aqueous conditions suggests future visible-light-induced biological applications.
Collapse
Affiliation(s)
- Hanchu Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)
| | - Guojin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).
| |
Collapse
|
33
|
Huang H, Zhang G, Chen Y. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502369] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Hu C, Chen Y. Chemoselective and fast decarboxylative allylation by photoredox catalysis under mild conditions. Org Chem Front 2015. [DOI: 10.1039/c5qo00187k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A chemoselective and fast decarboxylative allylation is developed by photoredox catalysis to build C(sp3)–allyl bonds under mild conditions.
Collapse
Affiliation(s)
- Chenchen Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|