1
|
Chabot MB, Fleming AM, Burrows CJ. Insights into the 5-Carboxamido-5-Formamido-2-Iminohydantoin Structural Isomerization Equilibria. J Org Chem 2022; 87:11865-11870. [PMID: 35960780 DOI: 10.1021/acs.joc.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of DNA to oxidants results in modification of the electron-rich guanine heterocycle including formation of the mutagenic 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) lesion. Previously thought to exist solely as a pair of diastereomers, we found under biologically relevant conditions that 2Ih reversibly closes to a formerly hypothetical intermediate and opens into a newly discovered regioisomer. In a nucleoside model, only ∼80% of 2Ih existed as the structure studied over the last 20 years with significant isomeric products persisting in buffered aqueous solution.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
2
|
Chabot MB, Fleming AM, Burrows CJ. Identification of the Major Product of Guanine Oxidation in DNA by Ozone. Chem Res Toxicol 2022; 35:1809-1813. [PMID: 35642826 DOI: 10.1021/acs.chemrestox.2c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozonolysis of guanosine formed the 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) nucleoside along with trace spiroiminodihydantoin (Sp). On the basis of literature precedent, we propose an unconventional ozone mechanism involving incorporation of only one oxygen atom of O3 to form 2Ih with evolution of singlet oxygen responsible for Sp formation. The increased yield of Sp in the buffered 1O2-stabilizing solvent D2O, formation of 2Ih in a short oligodeoxynucleotide, and 18O-isotope labeling provided evidence to support this mechanism. The elusiveness and challenges of working with 2Ih are described in a series of studies on the significant context effects on the half-life of the 2Ih glycosidic bond.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
3
|
Excision of Oxidatively Generated Guanine Lesions by Competitive DNA Repair Pathways. Int J Mol Sci 2021; 22:ijms22052698. [PMID: 33800059 PMCID: PMC7962115 DOI: 10.3390/ijms22052698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.
Collapse
|
4
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
5
|
Zeng T, Fleming AM, Ding Y, White HS, Burrows CJ. Interrogation of Base Pairing of the Spiroiminodihydantoin Diastereomers Using the α-Hemolysin Latch. Biochemistry 2017; 56:1596-1603. [PMID: 28230976 DOI: 10.1021/acs.biochem.6b01175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroiminodihydantoin (Sp) is a hyperoxidized form of guanine (G) resulting from oxidation by reactive oxygen species. The lesion is highly mutagenic, and the stereocenter renders the two isomers with distinct behaviors in chemical, spectroscopic, enzymatic, and computational studies. In this work, the α-hemolysin (αHL) latch sensing zone was employed to investigate the base pairing properties of the Sp diastereomers embedded in a double-stranded DNA. Duplexes containing (S)-Sp consistently gave deeper current blockage, and a baseline resolution of ∼0.8 pA was achieved between (S)-Sp:G and (R)-Sp:G base pairs. Ion fluxes were generally more hindered when Sp was placed opposite pyrimidines. Analysis of the current noise of blockade events further provided dynamics information about the Sp-containing base pairs. In general, base pairs comprised of (S)-Sp generated current fluctuations larger than those of their (R)-Sp counterparts, suggesting enhanced base pairing dynamics. The current noise was also substantially affected by the identity of the base opposite Sp, increasing in the following order: A < G < T < C. This report provides information about the dynamic structure of Sp in the DNA duplex and therefore has implications for the enzymatic repair of the Sp diastereomers.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yun Ding
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
6
|
Alshykhly OR, Fleming AM, Burrows CJ. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair. Chem Res Toxicol 2015; 28:1861-71. [PMID: 26313343 DOI: 10.1021/acs.chemrestox.5b00302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.
Collapse
Affiliation(s)
- Omar R Alshykhly
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
7
|
Alshykhly OR, Fleming A, Burrows CJ. 5-Carboxamido-5-formamido-2-iminohydantoin, in Addition to 8-oxo-7,8-Dihydroguanine, Is the Major Product of the Iron-Fenton or X-ray Radiation-Induced Oxidation of Guanine under Aerobic Reducing Conditions in Nucleoside and DNA Contexts. J Org Chem 2015; 80:6996-7007. [PMID: 26092110 PMCID: PMC4509422 DOI: 10.1021/acs.joc.5b00689] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/29/2022]
Abstract
Exogenously and endogenously produced reactive oxygen species attack the base and sugar moieties of DNA showing a preference for reaction at 2'-deoxyguanosine (dG) sites. In the present work, dG was oxidized by HO(•) via the Fe(II)-Fenton reaction or by X-ray radiolysis of water. The oxidized lesions observed include the 2'-deoxynucleosides of 8-oxo-7,8-dihydroguanine (dOG), spiroiminodihydantoin (dSp), 5-guanidinohydantoin (dGh), oxazolone (dZ), 5-carboxamido-5-formamido-2-iminohydantoin (d2Ih), 5',8-cyclo-2'-deoxyguanosine (cyclo-dG), and the free base guanine (Gua). Reactions conducted with ascorbate or N-acetylcysteine as a reductant under aerobic conditions identified d2Ih as the major lesion formed. Studies were conducted to identify the role of O2 and the reductant in product formation. From these studies, mechanisms are proposed to support d2Ih as a major oxidation product detected under aerobic conditions in the presence of the reductant. These nucleoside observations were then validated in oxidations of oligodeoxynucleotide and λ-DNA contexts that demonstrated high yields of d2Ih in tandem with dOG, dSp, and dGh. These results identify dG oxidation to d2Ih to occur in high yields leading to a hypothesis that d2Ih could be found from in cells stressed with HO(•). Further, the distorted ring structure of d2Ih likely causes this lesion to be highly mutagenic.
Collapse
Affiliation(s)
- Omar R. Alshykhly
- Department of Chemistry, University of
Utah, 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron
M. Fleming
- Department of Chemistry, University of
Utah, 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of
Utah, 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
Fleming AM, Alshykhly O, Zhu J, Muller JG, Burrows CJ. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem Res Toxicol 2015; 28:1292-300. [PMID: 25853314 PMCID: PMC4482417 DOI: 10.1021/acs.chemrestox.5b00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The nucleobase guanine in DNA (dG)
and RNA (rG) has the lowest
standard reduction potential of the bases, rendering it a major site
of oxidative damage in these polymers. Mapping the sites at which
oxidation occurs in an oligomer via chemical reagents utilizes hot
piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving
oxidized RNA. In the present studies, a series of time-dependent cleavages
of DNA and RNA strands containing various guanine lesions were examined
to determine the strand scission rate constants. The guanine base
lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin
(Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin
(2Ih) were evaluated in piperidine-treated DNA and aniline-treated
RNA. These data identified wide variability in the chemical lability
of the lesions studied in both DNA and RNA. Further, the rate constants
for cleaving lesions in RNA were generally found to be significantly
smaller than for lesions in DNA. The OG nucleotides were poorly cleaved
in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did
not cleave significantly in RNA; Gh and Z nucleotides cleaved in both
DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved
relatively quickly in both DNA and RNA. The data are compared and
contrasted with respect to future experimental design.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Omar Alshykhly
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|