1
|
Lu YL, Su J, Li JW, Xu WR. A molecular container providing supramolecular protection against acetylcholine hydrolysis. Org Biomol Chem 2024; 22:1634-1638. [PMID: 38323382 DOI: 10.1039/d4ob00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline, often attributed to the deficiency of acetylcholine, which can undergo hydrolysis by acetylcholinesterase (AChE) within the biological milieu. Here, we report a supramolecular strategy that takes advantage of confinement effects to inhibit such a hydrolysis process, shedding some light on AD therapy. A water-soluble and bowl-shaped molecule, hexacarboxylated tribenzotriquinacene (TBTQ-C6), was employed to shield acetylcholine (G1) from enzymatic degradation through host-guest binding interactions. Our study revealed highly efficient host-guest interactions with a binding ratio of 1 : 3, resulting in a significant reduction in acetylcholine hydrolysis from 91.1% to 7.4% in the presence of AChE under otherwise identical conditions. Furthermore, TBTQ-C6 showed potential for attenuating the degradation of butyrylcholine (G2) by butyrylcholinesterase (BChE). The broader implications of this study extend to the potential use of molecular containers in various biochemical and pharmacological applications, opening new avenues for research in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Long Lu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| | - Jing Su
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| | - Jian-Wei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Nazarova A, Padnya P, Kharlamova A, Petrov K, Yusupov G, Zelenikhin P, Bukharov M, Hua B, Huang F, Stoikov I. Peptidomimetics based on ammonium decasubstituted pillar[5]arenes: Influence of the alpha-amino acid residue nature on cholinesterase inhibition. Bioorg Chem 2023; 141:106927. [PMID: 37866207 DOI: 10.1016/j.bioorg.2023.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Cholinesterase inhibitors are a group of medicines that are widely used for the treatment of cognitive impairments accompanying Alzheimer's disease as well as for the treatment of pathological muscle weaknesses syndromes such as myasthenia gravis. The search for novel non-toxic and effective cholinesterase inhibitors for creating neuroprotective and neurotransmitter agents is an urgent interdisciplinary problem. For the first time, the application of water-soluble pillar[5]arenes containing amino acid residues as effective cholinesterase inhibitors was shown. The influence of the nature of aliphatic and aromatic alpha-amino acid residues (glycine, l-alanine, l-phenylalanine and l-tryptophan) on self-assembly, aggregate's stability, cytotoxicity on A549 and LEK cells and cholinesterase inhibition was studied. It was found that the studied compounds with aliphatic amino acid residues showed a low inhibitory ability against cholinesterases. It was established that the pillar[5]arene containing fragments of l-phenylalanine is the most promising inhibitor of butyrylcholinesterase (IC50 = 0.32 ± 0.01 μM), the pillar[5]arene with l-tryptophan residues is the most promising inhibitor of acetylcholinesterase (IC50 = 0.32 ± 0.01 μM). This study has shown a possible application of peptidomimetics based on pillar[5]arenes to inhibit cholinesterase, as well as control the binding affinity to a particular enzyme in a structure-dependent manner.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia.
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Alexandra Kharlamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia
| | - George Yusupov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Mikhail Bukharov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry Zhejiang University, 310058 Hangzhou, PR China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215 Hangzhou, PR China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry Zhejiang University, 310058 Hangzhou, PR China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215 Hangzhou, PR China; Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, PR China
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia.
| |
Collapse
|
3
|
Zhang ZH, Lin RL, Yu XY, Chen LX, Tao Z, Xiao X, Wei G, Redshaw C, Liu JX. Encapsulation of l-valine, d-leucine and d-methionine by cucurbit[8]uril. CrystEngComm 2022. [DOI: 10.1039/d1ce01513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding interactions of cucurbit[8]uril (Q[8]) with l-valine, d-leucine, and d-methionine, both in aqueous solution and solid state, have been studied by 1H NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Zeng-Hui Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| | - Xiang-Yun Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| |
Collapse
|
4
|
Shan P, Lin R, Liu M, Tao Z, Xiao X, Liu J. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu XY, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020; 60:9205-9214. [PMID: 32794352 DOI: 10.1002/anie.202010150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jacobs H Jordan
- The Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu X, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Minzan Zuo
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao‐Yu Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Affiliation(s)
- Sandra Kosiorek
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Nazar Rad
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
9
|
Silveira EV, Wanderlind EH, Masson AK, Cordeiro PS, Nascimento V, Affeldt RF, Micke GA. Molecular recognition of methamphetamine by carboxylatopillar[5]arene: drug-dependent complexation stoichiometry and insights into medical applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj06213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular recognition of the carboxylatopillar[5]arene on methamphetamine showed interconversion between H2:G ⇋ H:G stoichiometries with dependence on drug concentration.
Collapse
Affiliation(s)
- Eduardo V. Silveira
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | | | - Andrieli K. Masson
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | | | - Vanessa Nascimento
- Department of Organic Chemistry
- Fluminense Federal University
- Niterói
- Brazil
| | - Ricardo F. Affeldt
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Gustavo A. Micke
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
10
|
Silveira EV, Nascimento V, Wanderlind EH, Affeldt RF, Micke GA, Garcia-Rio L, Nome F. Inhibitory and Cooperative Effects Regulated by pH in Host-Guest Complexation between Cationic Pillar[5]arene and Reactive 2-Carboxyphthalanilic Acid. J Org Chem 2019; 84:9684-9692. [PMID: 31283216 DOI: 10.1021/acs.joc.9b01377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The study of host-guest complexation between reactive 2-carboxyphthalanilic acid (CPA) and two cationic pillararenes has been carried out. Host-guest complexation with significant kinetic effects was observed only with the smaller cavity size pillararene (P5A). Kinetics in the pH range 1.50-6.40, ESI-MS, 1H NMR titration, and ROESY experiments were performed to characterize the complexes. High binding stoichiometry (H:G2) was observed for all CPA protonation states. The system is pH-dependent, and inversion of cooperativity (negative to positive) occurs by increasing the dianionic CPA2- concentration (allosteric behavior). Toward physiological pH, association constant K1:1 does not change (104 M-1), and K1:2 increased from 102 to 104 M-1, as well as the inhibitory effect increased up to 222-fold. NMR results elucidated the structure of the complex and allowed us to create a map of H-H interactions that describes well the diversity and number of interactions in the complex.
Collapse
Affiliation(s)
- Eduardo V Silveira
- Departamento de Química , Universidade Federal de Santa Catarina , Florianópolis - SC 88040-900 , Brazil
| | - Vanessa Nascimento
- Departamento de Química Orgânica , Universidade Federal Fluminense , Niterói - RJ 24020-150 , Brazil
| | - Eduardo H Wanderlind
- Departamento de Química , Universidade Federal de Santa Catarina , Florianópolis - SC 88040-900 , Brazil
| | - Ricardo F Affeldt
- Departamento de Química , Universidade Federal de Santa Catarina , Florianópolis - SC 88040-900 , Brazil
| | - Gustavo A Micke
- Departamento de Química , Universidade Federal de Santa Catarina , Florianópolis - SC 88040-900 , Brazil
| | - Luis Garcia-Rio
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Física , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Faruk Nome
- Departamento de Química , Universidade Federal de Santa Catarina , Florianópolis - SC 88040-900 , Brazil
| |
Collapse
|
11
|
Da Pian M, Schalley CA, Fabris F, Scarso A. Insights into the synthesis of pillar[5]arene and its conversion into pillar[6]arene. Org Chem Front 2019. [DOI: 10.1039/c9qo00176j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of pillar[5]arenes from p-dialkoxybenzene and formaldehyde in the presence of iron(iii) chloride and tetramethylammonium chloride under mild reaction conditions was investigated in detail.
Collapse
Affiliation(s)
- Marta Da Pian
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie
- Organische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| |
Collapse
|
12
|
Affiliation(s)
- Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences; University of Brighton, Huxley Building, Moulsecoomb.; Brighton East Sussex BN2 4GJ UK
| |
Collapse
|
13
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
14
|
Yang K, Pei Y, Wen J, Pei Z. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun (Camb) 2018; 52:9316-26. [PMID: 27332040 DOI: 10.1039/c6cc03641d] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[n]arenes (n = 5-15) are a novel class of macrocyclic molecules with hydroquinone as the repeating unit linked by methylene bridges at para-positions. Introduced by T. Ogoshi for the first time in 2008, pillararenes have attracted increasing interest and have been widely studied during the last eight years, due to their unique structural advantages as host molecules, such as symmetrical rigid architecture, electron-rich cavities and facile functional modification. In this review, we first describe the syntheses of pillar[n]arenes including cyclooligomerization of pillar[n]arenes and modification of pillar[n]arenes after cyclooligomerization, summarising almost twenty different kinds of guest motifs and dividing them into three types: cationic, neutral and anionic motifs. The main section of this review examines the applications of pillar[n]arenes based on the host-guest interactions in different research fields, including biology, materials science and environmental science. Finally, future research directions and potential for novel applications are discussed.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
15
|
Affiliation(s)
- Brigitte Bibal
- Institut des Sciences Moléculaires UMR 5255, Université de Bordeaux, Talence, France
| |
Collapse
|
16
|
Dasgupta S, Mukherjee PS. Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors. Org Biomol Chem 2017; 15:762-772. [DOI: 10.1039/c6ob02214f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carboxylatopillar[n]arenes (CP[n]As, n = 5, 6, 7, 9, 10) constitute a family of water soluble synthetic receptors. These receptors are excellent hosts for a wide range of cationic organic molecules and have shown promising application in the fields of stimuli-responsive supramolecular assemblies, targeted drug delivery vehicles and sensors. Analogous metal-coordinated prismatic structures have shown excellent affinities for analytes.
Collapse
Affiliation(s)
- Suvankar Dasgupta
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800005
- India
| | | |
Collapse
|
17
|
Chen R, Gu H, Qiu F, Zhou Q, Li R, Ye Y, Zhuang Y, Zhang J, Jiang H. A dual-responsive supramolecular amphiphile based on cucurbit[7]uril/butyrylcholine host–guest molecular recognition. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Yu G, Zhou J, Shen J, Tang G, Huang F. Cationic pillar[6]arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 2016; 7:4073-4078. [PMID: 30155051 PMCID: PMC6013913 DOI: 10.1039/c6sc00531d] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Due to the differences in the cavity size of the hosts and the charge and length of the guests, a cationic water-soluble pillar[6]arene (WP6) selectively complexes with ATP to form a stable 1 : 1 inclusion complex WP6⊃ATP. This host-guest complexation was utilized to efficiently inhibit the hydrolysis of ATP, arising from the existence of the hydrophobic cavity of WP6. A folic acid functionalized diblock copolymer (FA-PEG-b-PAA) was employed to PEGylate WP6 to endow the polyion complex (PIC) micelles with specific targeting ability, preferentially delivering WP6 to folate receptor over-expressing KB cell. This host-guest complexation was further used to block the efflux pump to transport anticancer drugs out of cells by cutting off the energy source, which enhanced the efficacy of the cancer chemotherapy of DOX·HCl towards drug resistant MCF-7/ADR cell. This supramolecular method provides an extremely distinct strategy to potentially overcome multidrug resistance (MDR).
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jie Shen
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Guping Tang
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| |
Collapse
|
19
|
Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem Rev 2016; 116:7937-8002. [PMID: 27337002 DOI: 10.1021/acs.chemrev.5b00765] [Citation(s) in RCA: 928] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Nakamoto
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
20
|
Da Pian M, De Lucchi O, Strukul G, Fabris F, Scarso A. Cation templated improved synthesis of pillar[6]arenes. RSC Adv 2016. [DOI: 10.1039/c6ra07164c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Improved high yield syntheses of the larger pillar[6]arenes (P[6]) bearing different alkoxy substituents through cation templated syntheses using a series of small organic and organometallic cations is reported.
Collapse
Affiliation(s)
- M. Da Pian
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca' Foscari di Venezia
- Mestre (VE)
- Italy
| | - O. De Lucchi
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca' Foscari di Venezia
- Mestre (VE)
- Italy
| | - G. Strukul
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca' Foscari di Venezia
- Mestre (VE)
- Italy
| | - F. Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca' Foscari di Venezia
- Mestre (VE)
- Italy
| | - A. Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca' Foscari di Venezia
- Mestre (VE)
- Italy
| |
Collapse
|
21
|
Shao L, Hua B, Yang J, Yu G. Construction of a photo-responsive supra-amphiphile based on a tetracationic cyclobis(paraquat-p-phenylene) and an azobenzene-containing guest in water. Chem Commun (Camb) 2016; 52:6573-6. [DOI: 10.1039/c6cc02434c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A photo-responsive supra-amphiphile was constructed based on the host–guest molecular recognition between a tetracation cyclophane cyclobis(paraquat-p-phenylene) host and an azobenzene-containing guest.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bin Hua
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jie Yang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
22
|
Shao L, Zhou J, Hua B, Yu G. A dual-responsive supra-amphiphile based on a water-soluble pillar[7]arene and a naphthalene diimide-containing guest. Chem Commun (Camb) 2015; 51:7215-8. [DOI: 10.1039/c5cc00937e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A dual-responsive supra-amphiphile was firstly constructed based on a water-soluble pillar[7]arene and a naphthalene diimide-containing guest with a long alkyl chain and a trimethylammonium group. The morphology of the self-assembly formed from this supra-amphiphile could be adjusted by changing the solution pH or adding α-cyclodextrin.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jiong Zhou
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bin Hua
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
23
|
Zhang CF, Li SH, Zhang CC, Liu Y. Molecular binding behaviors and thermodynamics of ferrocenyl dimethylaminium derivatives by anionic pillar[5]arene. Org Biomol Chem 2015; 13:10808-12. [DOI: 10.1039/c5ob01884f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel anionic water-soluble pillar[5]arene (4C-WP5A) was synthesized via a convenient synthetic strategy of the direct cyclization of a functionalized hydroquinone monomer.
Collapse
Affiliation(s)
- Cui-Fang Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Sheng-Hua Li
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Cai-Cai Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|