1
|
Nambu H, Onuki Y, Aso K, Kanamori M, Tomohara K, Tsuge K, Yakura T. Ring expansion of spirocyclopropanes with stabilized sulfonium ylides: highly diastereoselective synthesis of cyclobutanes. Chem Commun (Camb) 2024; 60:4537-4540. [PMID: 38507284 DOI: 10.1039/d3cc06033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A novel method was devised for regioselective ring expansion of Meldrum's acid-derived spirocyclopropanes to spirocyclobutanes with stabilized sulfonium ylides, affording 1,2-trans-disubstituted 6,8-dioxaspiro[3.5]nonane-5,9-diones in up to 87% yields without the formation of any isomers. The aforementioned reaction was also applied to the barbituric acid-derived spirocyclopropane, resulting in the formation of the corresponding cyclobutanes.
Collapse
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | - Yuta Onuki
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Kana Aso
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Momoka Kanamori
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Keisuke Tomohara
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Synthesis of 2-[2-(Ethoxymethoxy)phenyl]spiro[cyclopropane-1,2′-indene]-1′,3′-dione. MOLBANK 2023. [DOI: 10.3390/m1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
An 1,3-indanedione-derived donor–acceptor cyclopropane, bearing the ethoxymethyl-protected phenolic group at the ortho-position of the donor aryl substituent, has been synthesized using a reaction sequence involving the Knoevenagel condensation of 1,3-indanedione with the corresponding protected salicylaldehyde followed by the Corey–Chaykovsky cyclopropanation of the obtained adduct with dimethylsulfoxonium methylide. The structure of the synthesized cyclopropane was unambiguously proved by single-crystal X-ray diffraction data.
Collapse
|
3
|
Penjarla TR, Shukla AK, Hazra R, Roy D, Kundarapu M, Dixit M, Bhattacharya A. Copper acetate catalysed C-C bond formation en route to the synthesis of spiro indanedione cyclopropylpyrazolones. Org Biomol Chem 2022; 20:3779-3784. [PMID: 35438087 DOI: 10.1039/d1ob02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of spiro compounds based on an indanedione-cyclopropane-pyrazolone framework. The reaction relied upon the Michael-initiated ring closure strategy and was carried out under Cu(OAc)2 catalysis, assisted by an oxygen atmosphere and the base Et3N. The final compounds were obtained as an inseparable mixture in most cases with modest to good yields using diverse substrates. Among the two plausible routes, computational studies indicated the feasibility of a route which involves a four-membered Cu containing intermediate. Given the generic nature of the developed method, it may be utilised to synthesise other analogous spiro systems.
Collapse
Affiliation(s)
- Thirupathi Reddy Penjarla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India. .,Department of Medicinal Chemistry, Aragen Life Sciences, Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Maheshwar Kundarapu
- Department of Medicinal Chemistry, Aragen Life Sciences, Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Mudit Dixit
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| |
Collapse
|
4
|
Onuki Y, Nambu H, Yakura T. Ring-Opening Cyclization of Spirocyclopropanes Using Sulfoxonium Ylides. Chem Pharm Bull (Tokyo) 2020; 68:479-486. [DOI: 10.1248/cpb.c20-00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuta Onuki
- Faculty of Pharmaceutical Sciences, University of Toyama
| | - Hisanori Nambu
- Faculty of Pharmaceutical Sciences, University of Toyama
| | | |
Collapse
|
5
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
6
|
Nambu H, Onuki Y, Ono N, Tsuge K, Yakura T. Ring-opening cyclization of spirocyclopropanes with stabilized sulfonium ylides for the construction of a chromane skeleton. Chem Commun (Camb) 2019; 55:6539-6542. [PMID: 31106310 DOI: 10.1039/c9cc03023a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regioselective ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with stabilized sulfonium ylides provided 2,3-trans-disubstituted 2,3,4,6,7,8-hexahydro-5H-1-benzopyran-5-ones in high yields without the formation of any isomers. The obtained product was readily converted into highly substituted chromane.
Collapse
Affiliation(s)
- Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Yuta Onuki
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Naoki Ono
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Gopinath P, Chandrasekaran S. Recent Advances in the Chemistry of Doubly Activated Cyclopropanes: Synthesis and Reactivity. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190213114604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diactivated cyclopropanes containing two geminal electron withdrawing
groups, commonly called as ‘Doubly Activated Cyclopropanes’ are useful synthons for
the synthesis of many interesting natural products and functionalized molecules. These
geminal electron withdrawing groups (EWG’s) facilitate the regioselective ring opening of
cyclopropanes by polarizing the C-C bond adjacent to it. This polarization also allows
them to undergo 1,3 dipolar cycloaddition reactions when substituted with a suitable electron
donor substituent at the adjacent carbon (donor-acceptor cyclopropanes) in the presence
of suitable dipolarophiles. In this review, we discuss the recent advances in the
chemistry of doubly activated cyclopropanes: their synthesis, reactions and applications in
total synthesis.
Collapse
Affiliation(s)
- Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | | |
Collapse
|
8
|
Chagarovskiy AO, Strel’tsova ED, Rybakov VB, Levina II, Trushkov IV. Synthesis of 2,3-diaryl-2,3,4,4а-tetrahydro-5Н-indeno[1,2-c]pyridazin-5-ones. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Iodide-Catalyzed Ring-Opening Cyclization of Cyclohexane-1,3-dione-2-spirocyclopropanes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Methods for the synthesis of donor-acceptor cyclopropanes. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4787] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Nambu H. Novel Methods for the Synthesis of Heterocycles Using Highly Reactive Spirocyclopropanes. YAKUGAKU ZASSHI 2018; 138:19-25. [DOI: 10.1248/yakushi.17-00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
12
|
Tang X, Zhu HP, Zhou J, Chen Y, Pan XL, Guo L, Li JL, Peng C, Huang W. Highly diastereoselective synthesis of cyclopropane-fused spiro-pseudoindoxyl derivatives through [2 + 1] annulation of 2-ylideneoxindoles and sulfonium bromides. Org Biomol Chem 2018; 16:8169-8174. [DOI: 10.1039/c8ob02034e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed an efficient method for diastereoselective synthesis of cyclopropane-fused spiropseudoindoxyl derivatives through [2 + 1] annulation.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Hong-Ping Zhu
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Jin Zhou
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yang Chen
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Xiao-Li Pan
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Li Guo
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Jun-Long Li
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Wei Huang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|
13
|
Nambu H, Hirota W, Fukumoto M, Tamura T, Yakura T. An Efficient Route to Highly Substituted Indoles via Tetrahydroindol-4(5H
)-one Intermediates Produced by Ring-Opening Cyclization of Spirocyclopropanes with Amines. Chemistry 2017; 23:16799-16805. [DOI: 10.1002/chem.201702622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani, Toyama 930-0194 Japan
| | - Wataru Hirota
- Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani, Toyama 930-0194 Japan
| | - Masahiro Fukumoto
- Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani, Toyama 930-0194 Japan
| | - Takafumi Tamura
- Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani, Toyama 930-0194 Japan
| | - Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani, Toyama 930-0194 Japan
| |
Collapse
|
14
|
Nie BJ, Wu LH, Hu RF, Sun Y, Wu J, He P, Huang NY. Synthesis of cyclopropa[c]indeno[1,2-b]quinolines through a MCR/Staudinger/aza-Wittig sequence. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1328065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bing-Jie Nie
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Li-Hui Wu
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ruo-Fei Hu
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yang Sun
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jing Wu
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ping He
- College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Nian-Yu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
15
|
Diastereoselective Synthesis of Spirocyclopropanes under Mild Conditions via Formal [2 + 1] Cycloadditions Using 2,3-Dioxo-4-benzylidene-pyrrolidines. Molecules 2017; 22:molecules22020328. [PMID: 28241452 PMCID: PMC6155796 DOI: 10.3390/molecules22020328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
A highly diastereoselective cyclopropanation of cyclic enones with sulfur ylides was developed under catalyst-free conditions, producing multifunctional spirocyclopropanes in generally excellent yields (up to 99% yield and >99:1 d.r.). The asymmetric version of this method was realized by using an easily available chiral sulfur ylide, affording products with moderate to good stereoselectivity.
Collapse
|
16
|
Midya SP, Gopi E, Satam N, Namboothiri INN. Synthesis of fused cyanopyrroles and spirocyclopropanes via addition of N-ylides to chalconimines. Org Biomol Chem 2017; 15:3616-3627. [DOI: 10.1039/c7ob00529f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DABCO-ylides react as a one-carbon source with chalconimines to afford fused cyanopyrrolesvia[4 + 1] annulation and spirocyclopropanesvia[2 + 1] annulation.
Collapse
Affiliation(s)
- Siba Prasad Midya
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Elumalai Gopi
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Nishikant Satam
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | | |
Collapse
|
17
|
Nambu H, Ono N, Hirota W, Fukumoto M, Yakura T. An Efficient Method for the Synthesis of 2',3'-Nonsubstituted Cycloalkane-1,3-dione-2-spirocyclopropanes Using (2-Bromoethyl)diphenylsulfonium Trifluoromethanesulfonate. Chem Pharm Bull (Tokyo) 2016; 64:1763-1768. [PMID: 27904084 DOI: 10.1248/cpb.c16-00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient and practical synthesis of 2',3'-nonsubstituted cyclohexane-1,3-dione-2-spirocyclopropanes using a sulfonium salt was achieved. The reaction of 1,3-cyclohexanediones and (2-bromoethyl)diphenylsulfonium trifluoromethanesulfonate with powdered K2CO3 in EtOAc at room temperature (r.t.) provided the corresponding spirocyclopropanes in high yields. The synthetic method was also applied to 1,3-cyclopentanedione, 1,3-cycloheptanedione, 1,3-indanedione, acyclic 1,3-diones, ethyl acetoacetate, and Meldrum's acid.
Collapse
Affiliation(s)
- Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | |
Collapse
|
18
|
Qian P, Du B, Song R, Wu X, Mei H, Han J, Pan Y. N-Iodosuccinimide-Initiated Spirocyclopropanation of Styrenes with 1,3-Dicarbonyl Compound for the Synthesis of Spirocyclopropanes. J Org Chem 2016; 81:6546-53. [DOI: 10.1021/acs.joc.6b01163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Qian
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| | - Bingnan Du
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| | - Ruichun Song
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| | - Xiaodong Wu
- MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan 238200, China
| | - Haibo Mei
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| | - Jianlin Han
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| | - Yi Pan
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, China
| |
Collapse
|