1
|
Dong J, Lu G, Tu Y, Fan C. Recent Research Progress of Red-Emitting/Near-Infrared Fluorescent Probes for Biothiols. NEW J CHEM 2022. [DOI: 10.1039/d1nj06244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-molecule biological thiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), occupy a vital position in physiological and pathological activities. Abnormal fluctuations of their concentrations are often closely connected with...
Collapse
|
2
|
Zhang C, Zhang Y, Wang H, Zhao H, Shang M, Zhang L, Li X, Wang Y. Synthesis and Application of Triazolothiadiazole-Coumarin Based Ratiometric Fluorescent Probes for Highly Selective Detection of H 2S. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
He L, Xiong H, Wang B, Zhang Y, Wang J, Zhang H, Li H, Yang Z, Song X. Rational Design of a Two-Photon Ratiometric Fluorescent Probe for Hypochlorous Acid with a Large Stokes Shift. Anal Chem 2020; 92:11029-11034. [DOI: 10.1021/acs.analchem.0c00030] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Long He
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Haiqing Xiong
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Yun Zhang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Haipu Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Zhaoguang Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| |
Collapse
|
4
|
Sheng H, Hu Y, Zhou Y, Fan S, Cao Y, Zhao X, Yang W. A hydroxyphenylquinazolinone-based fluorescent probe for turn-on detection of cysteine with a large Stokes shift and its application in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Zhang W, Zhao X, Gu W, Cheng T, Wang B, Jiang Y, Shen J. A novel naphthalene-based fluorescent probe for highly selective detection of cysteine with a large Stokes shift and its application in bioimaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04425b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient naphthalene-based fluorescent probe (BTNA) for cysteine (Cys) has been rationally designed and synthesized in this work, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol (BNO) fluorophore connected with an acrylate group (the fluorescence quenching and response group).
Collapse
Affiliation(s)
- Wang Zhang
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Xinye Zhao
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Weijing Gu
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Tian Cheng
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Bingxiang Wang
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
| | - Yuliang Jiang
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
| | - Jian Shen
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
| |
Collapse
|
6
|
Yin CX, Xiong KM, Huo FJ, Salamanca JC, Strongin RM. Fluorescent Probes with Multiple Binding Sites for the Discrimination of Cys, Hcy, and GSH. Angew Chem Int Ed Engl 2017; 56:13188-13198. [PMID: 28703457 DOI: 10.1002/anie.201704084] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play crucial roles in maintaining redox homeostasis in biological systems. This Minireview summarizes the most significant current challenges in the field of thiol-reactive probes for biomedical research and diagnostics, emphasizing the needs and opportunities that have been under-investigated by chemists in the selective probe and sensor field. Progress on multiple binding site probes to distinguish Cys, Hcy, and GSH is highlighted as a creative new direction in the field that can enable simultaneous, accurate ratiometric monitoring. New probe design strategies and researcher priorities can better help address current challenges, including the monitoring of disease states such as autism and chronic diseases involving oxidative stress that are characterized by divergent levels of GSH, Cys, and Hcy.
Collapse
Affiliation(s)
- Cai-Xia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education Institute of Molecular Science,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Kang-Ming Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education Institute of Molecular Science,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Fang-Jun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - James C Salamanca
- Department of Chemistry, Portland state University, Portland, OR, 97201, USA
| | - Robert M Strongin
- Department of Chemistry, Portland state University, Portland, OR, 97201, USA
| |
Collapse
|
7
|
Yin CX, Xiong KM, Huo FJ, Salamanca JC, Strongin RM. Fluoreszenzsonden mit mehreren Bindungsstellen unterscheiden zwischen Cys, Hcy und GSH. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cai-Xia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering des Bildungsministeriums, Institut für Molekularwissenschaften, Key Laboratory of Materials for Energy Conversion and Storage der Provinz Shanxi; Universität Shanxi; Taiyuan 030006 China
| | - Kang-Ming Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering des Bildungsministeriums, Institut für Molekularwissenschaften, Key Laboratory of Materials for Energy Conversion and Storage der Provinz Shanxi; Universität Shanxi; Taiyuan 030006 China
| | - Fang-Jun Huo
- Forschungsinstitut für Angewandte Chemie; Universität Shanxi; Taiyuan 030006 China
| | | | | |
Collapse
|
8
|
Wang XL, Sun R, Zhu WJ, Sha XL, Ge JF. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions. J Fluoresc 2017; 27:819-827. [PMID: 28168517 DOI: 10.1007/s10895-016-2017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022]
Abstract
Oxazinium derivatives have recently played an important role in bioanalysis attributing to the distinguished properties, thus a detailed study of the structure-property relationship is especially significant. Herein, pH-sensitive optical properties of Nile Blue (1a), N-monoalkyl-Nile Blue (1b) and Azure A (1c) have been carried out in extreme acid and base conditions. Dyes 1a and 1c showed colorimetric changes by the protonation of nitrogen atom in strong acidic condition (pH < 2.0), and dyes 1a - c exhibited colorimetric changes by equilibrium between amino and imide groups in very strong basic case (pH > 7.6). Besides, their fluorescent properties were closed to ON - OFF and OFF - ON emissions at 640-820 nm under strong acidic and basic conditions. Moreover, the absorption and emission properties were reversible, and there were no remarkable optical intensity changes of dyes 1a - c under subacidic and neutral solutions (pH = 3.0-7.0). The (TD) DFT calculations were used to optimize the most stable structures of their corresponding protonated and deprotonated forms, and their absorption and emission properties were also explained. Their fluorescent properties nearly ON-OFF and OFF - ON in strong acidic and basic conditions at near-infrared region will give the possible application in pH detection for extreme conditions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xiu-Li Wang
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Wei-Jin Zhu
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xin-Long Sha
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|