1
|
Handore KL, Lu H, Park H, Xiong Q, Batey RA. Synthesis of N-Hydroxysuccinimide Esters, N-Acylsaccharins, and Activated Esters from Carboxylic Acids Using I 2/PPh 3. J Org Chem 2024. [PMID: 38805361 DOI: 10.1021/acs.joc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A method for the syntheses of isolable, active esters is described in which carboxylic acids are treated with triphenylphosphine, iodine, and triethylamine. Active esters accessible in this way include N-hydroxysuccinimide esters, N-hydroxyphthalimide esters (N-(acyloxy)phthalimides), N-acylsaccharins, pentafluorophenol esters, pentachlorophenol esters, N-hydroxybenzotriazole esters, and hexafluoro-2-propanol esters. The approach can be similarly applied toward the formation of N-acylsaccharins and N-acylimidazoles. The method is suitable for the formation of isolable active esters of aromatic and aliphatic activated acids as well as α-amino acid derivatives. These products are widely used reagents in organic synthesis, peptide synthesis, medicinal chemistry, and chemical biology (e.g., for bioconjugations). The method has broad substrate scope, uses simple and inexpensive reagents, avoids the use of carbodiimides or other coupling agents, and occurs at room temperature. Additionally, the diastereomers of compound Boc-Ala-NHCHPh are demonstrated to be distinguishable by 1H NMR (in DMSO-d6), allowing for a straightforward NMR method to establish the degree of racemization of activated esters of Boc-Ala or amide bond formations using Boc-Ala.
Collapse
Affiliation(s)
- Kishor L Handore
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Heyuan Lu
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hyeongbin Park
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Qingyu Xiong
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Sivaraj C, Muthuvel K, Udayan AT, Premkumar E, Gandhi T. Facile Cleavage of Activated Ketones: An Access to Thioethers via In Situ Generation of Anhydrides by Pummerer-Type Rearrangement. J Org Chem 2024; 89:7020-7026. [PMID: 38664860 DOI: 10.1021/acs.joc.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, we report an oxygen insertion in activated ketones from simple inorganic carbonates for the synthesis of symmetric aromatic anhydrides. For the first time, Li2CO3 acts as an oxygen source and the in situ generated symmetric aromatic anhydrides undergo Pummerer-type rearrangement to access α-benzoyloxy-thioethers. Attractively, this protocol occurs under metal-, ligand-, and oxidant-free conditions and is compatible with a wide range of substrates. Control experiments reveal the reaction pathway.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Karthick Muthuvel
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ajay Thonipalliyalil Udayan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Egambaram Premkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Lu M, Fan H, Liu Q, Sun X. A Facile Synthetic Method for Anhydride from Carboxylic Acid with the Promotion of Triphenylphosphine Oxide and Oxaloyl Chloride. ACS OMEGA 2022; 7:34352-34358. [PMID: 36188305 PMCID: PMC9520564 DOI: 10.1021/acsomega.2c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient synthesis reaction of carboxylic anhydrides catalyzed by triphenylphosphine oxide is described for the quick synthesis of a range of symmetric carboxylic anhydrides and cyclic anhydrides under mild and neutral conditions with a high yield. The system adopts the strong reactive intermediate Ph3PCl2 as the catalyst of carboxylic acid salt; driven by catalytic reaction, the synthesis takes a relatively short time to complete.
Collapse
|
4
|
3,5-Dinitrobenzoate and 3,5-Dinitrobenzamide Derivatives: Mechanistic, Antifungal, and In Silico Studies. J CHEM-NY 2022. [DOI: 10.1155/2022/2336175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal infections, including those caused by Candida spp., are recognized in immunocompromised individuals for their high rates of morbidity and mortality. Microorganism resistance to conventional drugs compromises treatment effectiveness and yet also reveals the need to develop new drugs. In many compounds, nitro groups contribute to antimicrobial activity; thus, the inhibitory activity of a collection of twenty esters and amides (derived from 3,5-dinitrobenzoic acid) against Candida spp. was elucidated using microdilution methods to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicide Concentration (MFC), as well as probable mechanisms of action. The structures of the synthesized compounds were characterized by FTIR spectroscopy, 1H-NMR, 13C NMR, and HRMS. Of the tested derivatives, ten presented fungicidal activity against at least one of the tested strains. Ethyl 3,5-dinitrobenzoate (2) exhibited the most potent antifungal activity against Candida albicans (MIC = 125 µg/mL; 0.52 mM), Candida krusei (MIC = 100 µg/mL; 4.16 mM), and Candida tropicalis (MIC = 500 µg/ml; 2.08 mM). The structure of the second most potent derivative (propyl 3,5-dinitrobenzoate (3) reveals that esters with short alkyl side chains exhibit better biological activity profiles. Compounds 2 and 3 presented a mechanism of action involving the fungal cell membrane. Though compound 2 modeling against C. albicans revealed a multitarget antifungal mechanism of action, involving various cellular processes, interference in the synthesis of ergosterol was observed. Our results demonstrate that certain ester derivatives containing aromatic ring nitro groups may be useful in the search for new antifungal drugs.
Collapse
|
5
|
Catalytic and non-catalytic amidation of carboxylic acid substrates. Mol Divers 2021; 26:1311-1344. [PMID: 34120303 DOI: 10.1007/s11030-021-10252-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The present review offers an apt summary of amide bond formation with carboxylic acid substrates by taking advantage of several methods. Carboxamides can be regarded as a substantial part of organic and medicinal chemistry due to their utility in synthesizing peptides, lactams, and more than 25% of familiar drugs. Moreover, they play a leading role in the synthesis of bioactive products with anticancer, antifungal, and antibacterial properties. The data are arranged based on the type and amount of reagents used to conduct amidation and are also divided into the following categories: catalytic amidation of carboxylic acids, non-catalytic amidation, and transamidation.
Collapse
|
6
|
Mayr S, Marin-Luna M, Zipse H. Size-Driven Inversion of Selectivity in Esterification Reactions: Secondary Beat Primary Alcohols. J Org Chem 2021; 86:3456-3489. [PMID: 33555864 DOI: 10.1021/acs.joc.0c02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Relative rates for the Lewis base-mediated acylation of secondary and primary alcohols carrying large aromatic side chains with anhydrides differing in size and electronic structure have been measured. While primary alcohols react faster than secondary ones in transformations with monosubstituted benzoic anhydride derivatives, relative reactivities are inverted in reactions with sterically biased 1-naphthyl anhydrides. Further analysis of reaction rates shows that increasing substrate size leads to an actual acceleration of the acylation process, the effect being larger for secondary as compared to primary alcohols. Computational results indicate that acylation rates are guided by noncovalent interactions (NCIs) between the catalyst ring system and the DED substituents in the alcohol and anhydride reactants. Thereby stronger NCIs are formed for secondary alcohols than for primary alcohols.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Marta Marin-Luna
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
7
|
Zhou JY, Liu RQ, Wang CY, Zhu YM. Synthesis of Biaryls via Decarbonylative Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Anhydrides. J Org Chem 2020; 85:14149-14157. [PMID: 33108868 DOI: 10.1021/acs.joc.0c02266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal-catalyzed cross-couplings have been widely employed in the synthesis of many important molecules in synthetic chemistry for the construction of diverse C-C bonds. Conventional cross-coupling reactions require active electrophilic coupling partners, such as organohalides or sulfonates, which are not environmentally friendly enough. Herein, we disclose the first nickel-catalyzed Suzuki-Miyaura cross-coupling of aryl anhydrides and arylboronic acids for the synthesis of biaryls in a decarbonylation manner. The reaction tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents in this process.
Collapse
Affiliation(s)
- Jing-Ya Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui-Qing Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Cheng-Yi Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Li Z, Liu L, Xu K, Huang T, Li X, Song B, Chen T. Palladium-Catalyzed N-Acylation of Tertiary Amines by Carboxylic Acids: A Method for the Synthesis of Amides. Org Lett 2020; 22:5517-5521. [DOI: 10.1021/acs.orglett.0c01869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhaohui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kaiqiang Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Bin Song
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Zhou JY, Tao SW, Liu RQ, Zhu YM. Forging C–S Bonds through Nickel-Catalyzed Aryl Anhydrides with Thiophenols: Decarbonylation or Decarbonylation Accompanied by Decarboxylation. J Org Chem 2019; 84:11891-11901. [DOI: 10.1021/acs.joc.9b01746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing-Ya Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shou-Wei Tao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui-Qing Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Yang Z, Chen S, Yang F, Zhang C, Dou Y, Zhou Q, Yan Y, Tang L. PPh3
/Selectfluor-Mediated Transformation of Carboxylic Acids into Acid Anhydrides and Acyl Fluorides and Its Application in Amide and Ester Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Yang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Siwei Chen
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Chenxi Zhang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - You Dou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Yizhe Yan
- School of Food and Biological Engineering; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| |
Collapse
|
11
|
Zhang P, Pan S, Chen W, Liu M, Wu H. Palladium-Catalyzed Sequential Heteroarylation/Acylation Reactions of Iodobenzenes: Synthesis of Functionalized Benzo[d]oxazoles. J Org Chem 2018; 83:3354-3360. [DOI: 10.1021/acs.joc.7b03055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pingshun Zhang
- Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Shanfei Pan
- Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
12
|
|
13
|
Wangngae S, Pattarawarapan M, Phakhodee W. Ph3P/I2-Mediated Synthesis of N,N′,N″-Substituted Guanidines and 2-Iminoimidazolin-4-ones from Aryl Isothiocyanates. J Org Chem 2017; 82:10331-10340. [DOI: 10.1021/acs.joc.7b01794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sirilak Wangngae
- Department
of Chemistry, Faculty of Science, ‡Graduate School, §Center of Excellence in Materials
Science and Technology, and ∥Center of Excellence for Innovation in Chemistry,
Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mookda Pattarawarapan
- Department
of Chemistry, Faculty of Science, ‡Graduate School, §Center of Excellence in Materials
Science and Technology, and ∥Center of Excellence for Innovation in Chemistry,
Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wong Phakhodee
- Department
of Chemistry, Faculty of Science, ‡Graduate School, §Center of Excellence in Materials
Science and Technology, and ∥Center of Excellence for Innovation in Chemistry,
Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Gaspa S, Amura I, Porcheddu A, De Luca L. Anhydrides from aldehydes or alcohols via oxidative cross-coupling. NEW J CHEM 2017. [DOI: 10.1039/c6nj02625g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel type of oxidative cross-coupling was developed to prepare symmetrical and mixed anhydrides from aldehydes or alcohols using trichloroisocyanuric acid (TCCA).
Collapse
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Ida Amura
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
15
|
Ultrasonic-assisted synthesis of carbodiimides from N,N′-disubstituted thioureas and ureas. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1761-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Phakhodee W, Duangkamol C, Pattarawarapan M. Ph3P-I2 mediated aryl esterification with a mechanistic insight. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Phakhodee W, Wangngae S, Pattarawarapan M. Metal-free amidation of carboxylic acids with tertiary amines. RSC Adv 2016. [DOI: 10.1039/c6ra12801g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combination of Ph3P and I2 with an appropriate reagent addition sequence could enable effective amidation of carboxylic acids with tertiary amines under mild conditions.
Collapse
Affiliation(s)
- Wong Phakhodee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Sirilak Wangngae
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Mookda Pattarawarapan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| |
Collapse
|