1
|
Ryu U, Ly D, Shimabukuro K, Davies HML, Jones CW. Facile Recovery and Recycling of a Soluble Dirhodium Catalyst in Asymmetric Cyclopropanation via a Catalyst-in-Bag System. Org Process Res Dev 2024; 28:4146-4155. [PMID: 39569052 PMCID: PMC11574847 DOI: 10.1021/acs.oprd.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane. The catalyst Rh2(S-TPPTTL)4 [TPPTTL = (1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate] is explored in enantioselective cyclopropanation reactions under a variety of conditions. The Rh2(S-TPPTTL)4 catalyst, when contained in the catalyst-in-bag system, provides high yields and enantioselectivities, akin to the homogeneous catalyst in solution, with negligible rhodium permeation out of the bag over five catalytic cycles. The catalyst-in-bag approach facilitates recovery of the expensive rhodium metal and ligand, with only ppm level Rh detected in the reaction products. The flexible and expandable catalyst-in-bag system can be accommodated in vessels of different shapes and dimensions.
Collapse
Affiliation(s)
- UnJin Ryu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Duc Ly
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kristin Shimabukuro
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Christopher W Jones
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Moi D, Cabua MC, Velichko V, Cocco A, Chiappone A, Mocci R, Porcu S, Piras M, Bianco S, Pesciaioli F, Secci F. Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds. Molecules 2022; 27:7943. [PMID: 36432044 PMCID: PMC9699303 DOI: 10.3390/molecules27227943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.
Collapse
Affiliation(s)
- Davide Moi
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Maria Chiara Cabua
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Viktoria Velichko
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Annalisa Chiappone
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Rita Mocci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Stefania Porcu
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Stefano Bianco
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| |
Collapse
|
3
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Nonaka S, Matsumoto H, Nagao M, Hoshino Y, Miura Y. Investigation of the effect of microflow reactor diameter on condensation reactions in l-proline-immobilized polymer monoliths. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00386k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structure of porous monolith in a microflow reactor and the reactor diameter affect the residence time distribution (RTD). The effect of the RTD on the catalytic efficiency of the asymmetric aldol addition reaction was examined.
Collapse
Affiliation(s)
- Seiya Nonaka
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Li Z, Rösler L, Wissel T, Breitzke H, Hofmann K, Limbach HH, Gutmann T, Buntkowsky G. Design and characterization of novel dirhodium coordination polymers – the impact of ligand size on selectivity in asymmetric cyclopropanation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00109d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel dirhodium coordination polymers are synthesized and characterized by various spectroscopic techniques. The catalysts exhibit good stability and excellent catalytic performance and selectivity in the cyclopropanation of diazooxindoles.
Collapse
Affiliation(s)
- Zhenzhong Li
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Lorenz Rösler
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Till Wissel
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Hergen Breitzke
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Kathrin Hofmann
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Hans-Heinrich Limbach
- Free University of Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | - Torsten Gutmann
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| | - Gerd Buntkowsky
- Technical University of Darmstadt
- Institute of Inorganic and Physical Chemistry
- D-64287 Darmstadt
- Germany
| |
Collapse
|
6
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Matsumoto H, Hoshino Y, Iwai T, Sawamura M, Miura Y. Polystyrene‐Supported PPh
3
in Monolithic Porous Material: Effect of Cross‐Linking Degree on Coordination Mode and Catalytic Activity in Pd‐Catalyzed C−C Cross‐Coupling of Aryl Chlorides. ChemCatChem 2020. [DOI: 10.1002/cctc.202000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Tomohiro Iwai
- Department of Chemistry Hokkaido University Kita 10 Nishi 8 Kita-ku Sapporo 060-0810 Japan
| | - Masaya Sawamura
- Department of Chemistry Hokkaido University Kita 10 Nishi 8 Kita-ku Sapporo 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10 Kita-ku Sapporo 001-0021 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
8
|
Li Z, Rösler L, Herr K, Brodrecht M, Breitzke H, Hofmann K, Limbach HH, Gutmann T, Buntkowsky G. Dirhodium Coordination Polymers for Asymmetric Cyclopropanation of Diazooxindoles with Olefins: Synthesis and Spectroscopic Analysis. Chempluschem 2020; 85:1737-1746. [PMID: 32790226 DOI: 10.1002/cplu.202000421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Indexed: 12/30/2022]
Abstract
A facile approach is reported for the preparation of dirhodium coordination polymers [Rh2 (L1)2 ]n (Rh2 -L1) and [Rh2 (L2)2 ]n (Rh2 -L2; L1=N,N'-(pyromellitoyl)-bis-L-phenylalanine diacid anion, L2=bis-N,N'-(L-phenylalanyl) naphthalene-1,4,5,8-tetracarboxylate diimide) from chiral dicarboxylic acids by ligand exchange. Multiple techniques including FTIR, XPS, and 1 H→13 C CP MAS NMR spectroscopy reveal the formation of the coordination polymers. 19 F MAS NMR was utilized to investigate the remaining TFA groups in the obtained coordination polymers, and demonstrated near-quantitative ligand exchange. DR-UV-vis and XPS confirm the oxidation state of the Rh center and that the Rh-single bond in the dirhodium node is maintained in the synthesis of Rh2 -L1 and Rh2 -L2. Both coordination polymers exhibit excellent catalytic performance in the asymmetric cyclopropanation reaction between styrene and diazooxindole. The catalysts can be easily recycled and reused without significant reduction in their catalytic efficiency.
Collapse
Affiliation(s)
- Zhenzhong Li
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Lorenz Rösler
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Kevin Herr
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Martin Brodrecht
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Hergen Breitzke
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Kathrin Hofmann
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Hans-Heinrich Limbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Torsten Gutmann
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.,University Kassel, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Gerd Buntkowsky
- Technical University of Darmstadt, Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| |
Collapse
|
9
|
Facile Visible‐Light‐Induced Preparation and Hydrophobization of Porous polyEGDMA and polyTEGDMA Thick Monoliths. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Lenshina NA, Arsenyev MV, Baten’kin MA, Chesnokov SA. Photolytic synthesis and hydrophobization of plates of porous polymer material based on dimethacrylate oligomer MDP-2. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Chiral Dirhodium(II) Carboxylates: New Insights into the Effect of Ligand Stereo-Purity on Catalyst Structure and Enantioselectivity. Catalysts 2018. [DOI: 10.3390/catal8070268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Chen L, Leslie D, Coleman MG, Mack J. Recyclable heterogeneous metal foil-catalyzed cyclopropenation of alkynes and diazoacetates under solvent-free mechanochemical reaction conditions. Chem Sci 2018; 9:4650-4661. [PMID: 29899959 PMCID: PMC5969500 DOI: 10.1039/c8sc00443a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Silver and copper foil were found to be effective, versatile and selective heterogeneous catalysts for the cyclopropenation of terminal and internal alkynes under mechanochemical reaction conditions.
Silver and copper foil were found to be effective, versatile and selective heterogeneous catalysts for the cyclopropenation of terminal and internal alkynes under mechanochemical reaction conditions. This methodology enables the functionalization of a wide range of terminal or internal alkynes under ambient, aerobic, and solvent-free conditions. Finally, we have demonstrated a unique and versatile one-pot domino Sonogashira-cyclopropenation mechanochemical reaction for the formation of complex cyclopropenes.
Collapse
Affiliation(s)
- Longrui Chen
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0037 , USA .
| | - Devonna Leslie
- School of Chemistry and Materials Science , Rochester Institute of Technology , Rochester , New York 14623-5604 , USA .
| | - Michael G Coleman
- School of Chemistry and Materials Science , Rochester Institute of Technology , Rochester , New York 14623-5604 , USA .
| | - James Mack
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0037 , USA .
| |
Collapse
|
13
|
Liu J, Xu Y, Groszewicz PB, Brodrecht M, Fasel C, Hofmann K, Tan X, Gutmann T, Buntkowsky G. Novel dirhodium coordination polymers: the impact of side chains on cyclopropanation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01493k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven novel dirhodium coordination polymers (Rh2–Ln) (n = 1–7) are prepared by employing bitopic ligands to connect dirhodium nodes.
Collapse
Affiliation(s)
- Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi'an
- P. R. China
| | - Yeping Xu
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Pedro B. Groszewicz
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Martin Brodrecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Claudia Fasel
- FB Material- und Geowissenschaften
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Kathrin Hofmann
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Xijuan Tan
- Laboratory of Mineralization and Dynamics
- College of Earth Sciences and Land Resources
- Chang'an University
- 710054 Xi'an
- P. R. China
| | - Torsten Gutmann
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical Chemistry
- Technical University Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
14
|
On the Structure of Chiral Dirhodium(II) Carboxylate Catalysts: Stereoselectivity Relevance and Insights. Catalysts 2017. [DOI: 10.3390/catal7110347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Yu L, Han Z, Ding Y. Gram-Scale Preparation of Pd@PANI: A Practical Catalyst Reagent for Copper-Free and Ligand-Free Sonogashira Couplings. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00322] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Yu
- Jiangsu Co-innovation Center
for Prevention and Control of Important Animal Infectious Diseases
and Zoonoses, Jiangsu Key Laboratory of Zoonosis, School of Chemistry
and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People’s Republic of China
| | - Zhe Han
- Jiangsu Co-innovation Center
for Prevention and Control of Important Animal Infectious Diseases
and Zoonoses, Jiangsu Key Laboratory of Zoonosis, School of Chemistry
and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People’s Republic of China
| | - Yuanhua Ding
- Jiangsu Co-innovation Center
for Prevention and Control of Important Animal Infectious Diseases
and Zoonoses, Jiangsu Key Laboratory of Zoonosis, School of Chemistry
and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People’s Republic of China
| |
Collapse
|
16
|
Ghanem A, Adly FG, Sokerik Y, Antwi NY, Shenashen MA, El-Safty SA. Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta 2016; 169:239-248. [PMID: 28411817 DOI: 10.1016/j.talanta.2016.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/19/2023]
Abstract
Trimethylated-β-cyclodextrin (TM-β-CD) was encapsulated within several polymer monolithic capillary columns for reversed-phase chiral nano-liquid chromatography (nano-LC). The monolithic phases were prepared using the one-pot in situ copolymerization of ethylene glycol dimethacrylate (EDMA), glycidyl methacrylate (GMA) monomers and 1-propanol, 1,4-butanediol as progenic solvents in presence of TM-β-CD solution within fused silica capillaries (150µm I.D.). The obtained chiral monolithic stationery phases were characterized by scanning electron microscopy (SEM), N2 adsorption/desorption isotherms, wide angle x-ray diffraction (WAXRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The materials characterization demonstrated that monolithic phases with higher concentration of TM-β-CD have relatively larger surface area, smaller pore size and larger total pore volume compared to those with lower concentration TM-β-CD. The prepared columns were tested for their enantioseparation efficiency of a range of racemic pharmaceuticals. The screening results demonstrated the potential of functionalizing polymer monolithic stationary phases with TM-β-CD using the in situ encapsulation approach.
Collapse
Affiliation(s)
- Ashraf Ghanem
- Chirality Program, University of Canberra, ACT 2601, Australia. http://www.chiralitygroup.com
| | - Frady G Adly
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Yasser Sokerik
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Nana Yaa Antwi
- Chirality Program, University of Canberra, ACT 2601, Australia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| |
Collapse
|