2
|
Hashim MI, Le HTM, Chen TH, Chen YS, Daugulis O, Hsu CW, Jacobson AJ, Kaveevivitchai W, Liang X, Makarenko T, Miljanić OŠ, Popovs I, Tran HV, Wang X, Wu CH, Wu JI. Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. J Am Chem Soc 2018; 140:6014-6026. [PMID: 29656637 DOI: 10.1021/jacs.8b02869] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1. Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and
Collapse
Affiliation(s)
- Mohamed I Hashim
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ha T M Le
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Teng-Hao Chen
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Yu-Sheng Chen
- Center for Advanced Radiation Source (ChemMatCARS) , The University of Chicago , c/o APS/ANL, 9700 South Cass Drive , Argonne , Illinois 60439 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Wei Hsu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Allan J Jacobson
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States.,Texas Center for Superconductivity , 202 UH Science Center , Houston , Texas 77204-5002 , United States
| | - Watchareeya Kaveevivitchai
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiao Liang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Tatyana Makarenko
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ognjen Š Miljanić
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ilja Popovs
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Hung Vu Tran
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiqu Wang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Hua Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Judy I Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| |
Collapse
|
3
|
Tomanová M, Jedinák L, Košař J, Kvapil L, Hradil P, Cankař P. Synthesis of 4-substituted pyrazole-3,5-diamines via Suzuki-Miyaura coupling and iron-catalyzed reduction. Org Biomol Chem 2017; 15:10200-10211. [PMID: 29177274 DOI: 10.1039/c7ob02373a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient synthesis of 4-substituted-1H-pyrazole-3,5-diamines was developed to access derivatives with an aryl, heteroaryl, or styryl group, which are otherwise relatively difficult to prepare. The first step is based on the Suzuki-Miyaura cross-coupling reaction utilizing the XPhos Pd G2 precatalyst. The coupling reactions of 4-bromo-3,5-dinitro-1H-pyrazole with the electron-rich/deficient or sterically demanding boronic acids enabled the production of the corresponding dinitropyrazoles. The subsequent iron-catalyzed reduction of both nitro groups with hydrazine hydrate accomplished the synthesis. The additional demethylation of the 4-methoxystyryl derivative allowed the production of the carboanalog of CAN508 reported as a selective CDK9 inhibitor.
Collapse
Affiliation(s)
- Monika Tomanová
- Institute of Molecular and Translation Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
4
|
Rodríguez-Venegas E, García-Báez EV, Martínez-Martínez FJ, Cruz A, Padilla-Martínez II. Solventless Synthesis of Poly(pyrazolyl)phenyl-methane Ligands and Thermal Transformation of Tris(3,5-dimethylpyrazol-1-yl)phenylmethane. Molecules 2017; 22:molecules22030441. [PMID: 28287474 PMCID: PMC6155200 DOI: 10.3390/molecules22030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022] Open
Abstract
The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C₆H₅C(PzR2)₃ (R = H, Me), starting from PhCCl₃ and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C₆H₅C(PzMe2)₃ is thermally transformed into the bis(pyrazolyl)(p-pyrazolyl)phenylmethane ligand PzMe2-C₆H₄CH(PzMe2)₂. In this compound both PzMe2 rings are linked through the N-atom to the methine C-atom. At higher temperatures, the binding mode of PzMe2 changes from N1 to C4. All transformations occurred via quinonoid carbocation intermediates that undergo an aromatic electrophilic substitution on the 4-position of PzMe2. Reaction conditions were established to obtain five tris(pyrazolyl)phenylmethane ligands in moderate to good yields. ¹H- and 13C-NMR spectroscopy and X-ray diffraction of single crystals support the proposed structures.
Collapse
Affiliation(s)
- Edith Rodríguez-Venegas
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional-UPIBI, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México C.P. 07340, Mexico.
| | - Efrén V García-Báez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional-UPIBI, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México C.P. 07340, Mexico.
| | - Francisco J Martínez-Martínez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, Coquimatlán C.P. 28400, Mexico.
| | - Alejandro Cruz
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional-UPIBI, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México C.P. 07340, Mexico.
| | - Itzia I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional-UPIBI, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México C.P. 07340, Mexico.
| |
Collapse
|