Molina P, Zapata F, Caballero A. Anion Recognition Strategies Based on Combined Noncovalent Interactions.
Chem Rev 2017;
117:9907-9972. [PMID:
28665114 DOI:
10.1021/acs.chemrev.6b00814]
[Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights the most significant examples of an emerging field in the design of highly selective anion receptors. To date, there has been remarkable progress in the binding and sensing of anions. This has been driven in part by the discovery of ways to construct effective anion binding receptors using the dominant N-H functional groups and neutral and cationic C-H hydrogen bond donors, as well as underexplored strong directional noncovalent interactions such as halogen-bonding and anion-π interactions. In this review, we will describe a new and promising strategy for constructing anion binding receptors with distinct advantages arising from their elaborate design, incorporating multiple binding sites able to interact cooperatively with anions through these different kinds of noncovalent interactions. Comparisons with control species or solely hydrogen-bonding analogues reveal unique characteristics in terms of strength, selectivity, and interaction geometry, representing important advances in the rising field of supramolecular chemistry.
Collapse