1
|
Xu J, Ge Z, Ding K, Wang X. Rh(II)/Pd(0) Dual-Catalyzed Regio-Divergent Three-Component Propargylic Substitution. JACS AU 2023; 3:2862-2872. [PMID: 37885573 PMCID: PMC10598837 DOI: 10.1021/jacsau.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Regio-divergent propargylic substitution to generate functionally diverse products from identical starting materials remains a formidable challenge, probably due to the unpredictable regiochemical complexity. In practically, the synthesis of α-quaternary propargylic-substituted products is still much less developed, and preprepared nucleophiles are generally applied in this type of reaction with propargylic substrates, which limits the reaction efficiency and diversity of the obtained products. Herein, we disclose unprecedented three-component propargylic substitution of α-diazo esters with amines and propargylic carbonates under dirhodium/palladium dual catalysis. The key to the success of this multicomponent propargylic substitution is to avoid two-component side reactions through a tandem process of dirhodium(II)-catalyzed carbene insertion and palladium-catalyzed regiodivergent propargylic substitution. The judicious selection of a diphosphine (dppf) or monophosphine (tBuBrettphos) as the ligand is crucial for the reaction to generate different products in a switchable way, α-quaternary 1,3-dienyl or propargylated products, with high regio- and chemoselectivities.
Collapse
Affiliation(s)
- Jie Xu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaoliang Ge
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, 800 Dongchuan
Road, Shanghai 200240, China
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
| |
Collapse
|
2
|
Tsukamoto H. Umpolung Type-I and -II Cyclizations of Aldehyde-Containing Allylpalladium Intermediates. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Flores O, Wagner P, Suffert J. Cyclocarbopalladation/Stille Cascade: Stereoselective Access to Quaternary Functionalized Carbons. Org Lett 2021; 23:6568-6572. [PMID: 34375102 DOI: 10.1021/acs.orglett.1c02400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploration of the 4-exo-dig cyclocarbopalladation in the discovery of new and original scaffolds afforded some unexpected results. The search for a way to produce seven-membered ring systems led to polycyclic molecules bearing a tetrasubstituted carbon. The triple bond that substitutes the cyclohexene ring on the starting compound is crucial for a high stereoselectivity. This observation has been confirmed by the reaction of a nonsubstituted cyclohexene ring resulting in poor stereoselectivity and low yields.
Collapse
Affiliation(s)
- Océane Flores
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, CNRS, UMR 7200, 67000 Strasbourg, France
| | - Patrick Wagner
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, CNRS, UMR 7200, 67000 Strasbourg, France
| | - Jean Suffert
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, CNRS, UMR 7200, 67000 Strasbourg, France
| |
Collapse
|
4
|
Kuribara T, Nakajima M, Nemoto T. Mechanistic Studies of the Pd- and Pt-Catalyzed Selective Cyclization of Propargyl/Allenyl Complexes. J Org Chem 2021; 86:9670-9681. [PMID: 34176262 DOI: 10.1021/acs.joc.1c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the discovery of an unusual transition-metal-catalyzed reaction, the elucidation of the underlying mechanism is essential to understand the characteristic reactivity of the metal. We previously reported a synthetic method for tricyclic indoles using Pt-catalyzed Friedel-Crafts-type C-H coupling. In this reaction, the Pt catalyst selectively formed a seven-membered ring, but the Pd catalyst only afforded a six-membered ring. However, the reasons for the different selectivities caused by Pd and Pt were unclear. We performed density functional theory (DFT) calculations and experimental studies to reveal the origin of the different behaviors of the two metals. The calculations revealed that the formation of the six- and seven-membered rings proceeds via η1-allenyl and η3-propargyl/allenyl complexes, respectively. A molecular orbital analysis of the η3-propargyl/allenyl complex revealed that, for the platinum complex, the energy required to convert the unoccupied molecular orbital on the reactive carbon into the lowest unoccupied molecular orbital (LUMO) was lower than that for the palladium complex. In addition, DFT calculations revealed that the combination of platinum and bis[2-(diphenylphosphino)phenyl] ether (DPEphos) reduced the activation energy of the seven-membered cyclization in comparison with palladium or PPh3. Additional experimental studies, including NMR studies and stoichiometric reactions, support the aforementioned examination.
Collapse
Affiliation(s)
- Takahito Kuribara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
5
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
6
|
Barlow SR, Callaghan LJ, Franckevičius V. Investigation of the palladium-catalysed cyclisation of α-amido malonates with propargylic compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
O’Broin CQ, Guiry PJ. Advances in Decarboxylative Palladium-Catalyzed Reactions of Propargyl Electrophiles. J Org Chem 2020; 85:10321-10333. [DOI: 10.1021/acs.joc.0c01218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Calvin Q. O’Broin
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Trost BM, Kalnmals CA. Annulative Allylic Alkylation Reactions between Dual Electrophiles and Dual Nucleophiles: Applications in Complex Molecule Synthesis. Chemistry 2019; 26:1906-1921. [DOI: 10.1002/chem.201903961] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/29/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305 USA
| | | |
Collapse
|
9
|
Kawase A, Omura H, Doi T, Tsukamoto H. Palladium(0)-catalyzed [4+2] Annulation of Salicylaldehydes and Propargyl Carbonates to Produce 3,4-Dihydro-2-methylene-2H-1-benzopyran-4-ols. CHEM LETT 2019. [DOI: 10.1246/cl.190642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayumu Kawase
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirotaka Omura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirokazu Tsukamoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| |
Collapse
|
10
|
O’Broin CQ, Guiry PJ. Construction of All-Carbon Quaternary Stereocenters by Palladium-Catalyzed Decarboxylative Propargylation. Org Lett 2019; 21:5402-5406. [DOI: 10.1021/acs.orglett.9b01493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Calvin Q. O’Broin
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Affiliation(s)
- Jasper Biemolt
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam; Institute for Molecules; Medicines & Systems; Vrije Universiteit Amsterdam; De Boelelaan 1108 1081HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam; Institute for Molecules; Medicines & Systems; Vrije Universiteit Amsterdam; De Boelelaan 1108 1081HZ Amsterdam The Netherlands
| |
Collapse
|
12
|
Theoretical Calculations on the Mechanism of Enantioselective Copper(I)-Catalyzed Addition of Enynes to Ketones. Catalysts 2018. [DOI: 10.3390/catal8090359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Computational investigations on the bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones were performed with the density functional theory (DFT) method. Two BPE-mesitylcopper (CuMes) catalysts, BPE-CuMes and (S,S)-Ph-BPE–CuMes, were employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations on the BPE-CuMes system indicate that the active metallized enyne intermediate acts as the catalyst for the catalytic cycle. The catalytic cycle involves two steps: (1) ketone addition to the alkene moiety of the metallized enyne; and (2) metallization of the enyne followed by the release of product with the recovery of the active metallized enyne intermediate. The first step accounts for the distribution of the products, and therefore is the stereo-controlling step in chiral systems. In the chiral (S,S)-Ph-BPE–CuMes system, the steric hindrance is vital for the distribution of products and responsible for the stereoselectivity of this reaction. The steric hindrance between the phenyl ring of the two substrates and groups at the chiral centers in the ligand skeleton is identified as the original of the stereoselectivity for the titled reaction.
Collapse
|
13
|
Watanabe H, Okubo M, Watanabe K, Udagawa T, Kawatsura M. Palladium-catalyzed intermolecular coupling of 3-substituted propargylic carbonates with phenols: Synthesis of 2-substituted benzofuran derivatives. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Yoshida M. Selective Synthesis of Cyclic Compounds by Palladium-Catalyzed Cyclization of Propargylic Esters with Nucleophiles. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Abozeid MA, Sairenji S, Takizawa S, Fujita M, Sasai H. Enantioselective synthesis of tetrahydrocyclopenta[b]indole bearing a chiral quaternary carbon center via Pd(ii)–SPRIX-catalyzed C–H activation. Chem Commun (Camb) 2017; 53:6887-6890. [DOI: 10.1039/c7cc03199h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pd(ii)–SPRIX promotes the first highly enantioselective cyclization of 3-alkenylindoles into the corresponding indoles bearing a chiral quaternary carbon center via C–H activation and an assisting effect by the allyl substituent.
Collapse
Affiliation(s)
- Mohamed Ahmed Abozeid
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
- Department of Chemistry
| | - Shiho Sairenji
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
| | - Makoto Fujita
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
| |
Collapse
|