1
|
Bondarev VL, Festa AA, Storozhenko OA, Golantsov NE, Pappula V, Tskhovrebov AG, Varlamov AV, Voskressensky LG. Azo Coupling of Indoles Revisited: Synthesis of Biindolyl Photoswitches via the Azo-Coupling/C-H Functionalization Domino Approach. J Org Chem 2023; 88:12949-12957. [PMID: 37624664 DOI: 10.1021/acs.joc.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
When azo coupling of aryldiazonium salts with indoles was carried out in aprotic nonpolar solvent on air, a pseudo-three-component reaction has been discovered. Azo coupling is followed by a nucleophilic addition of a second indole unit to the indolium intermediate; aromatization and oxidation are achieved under air.
Collapse
Affiliation(s)
- Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Nikita E Golantsov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Venkatanarayana Pappula
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexander G Tskhovrebov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Chen D, Li J, Liu G, Zhang X, Wang X, Liu Y, Liu X, Liu X, Li Y, Shan Y. Accessing indole-isoindole derivatives via palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. Chem Commun (Camb) 2023; 59:10540-10543. [PMID: 37566103 DOI: 10.1039/d3cc02654j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.
Collapse
Affiliation(s)
- Dianpeng Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xinghai Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongqin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
3
|
Zou C, Wu H, He J, Hu Y, Deng W, Li X, Hu J, Li Y, Huang Y. Anodic C(sp 3)-H Acyloxylation of Indolin-3-ones Enabled by Oxidant-Free Cross-Dehydrogenative C(sp 3)-O Coupling. J Org Chem 2022; 87:1335-1347. [PMID: 34985264 DOI: 10.1021/acs.joc.1c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An efficient anodic C(sp3)-H acyloxylation protocol has been established via intermolecular cross-dehydrogenative C(sp3)-O coupling. The protocol provides various C2-acyloxy indolin-3-ones without the addition of metal catalysts and external oxidants because indolin-3-ones can be directly oxidized at the anode. The effective application of several medical drugs and the realization of the gram-scale experiment have proven the practicality of this protocol.
Collapse
Affiliation(s)
- Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jiangtao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weijie Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Xinling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
4
|
Yan L, Han L, Xie R. Ferrocenyl induced one-pot synthesis of 3,3′-ferrocenylbiindoles. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1770235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ligang Yan
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Ruijun Xie
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| |
Collapse
|
5
|
Hirao S, Yamashiro T, Kohira K, Mishima N, Abe T. 2,3-Dimethoxyindolines: a latent electrophile for SNAr reactions triggered by indium catalysts. Chem Commun (Camb) 2020; 56:5139-5142. [DOI: 10.1039/d0cc01210f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unprecedented utilization of 2,3-dimethoxyindolines (DiMeOINs) as a latent electrophile in regioselective In-catalyzed aromatic substitutions has been reported.
Collapse
Affiliation(s)
- Seiya Hirao
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Toshiki Yamashiro
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Kyouka Kohira
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Naoki Mishima
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Takumi Abe
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| |
Collapse
|
6
|
Li TR, Zhang MM, Wang BC, Lu LQ, Xiao WJ. Synthesis of 3,3′-Biindoles through a Copper-Catalyzed Friedel–Crafts Propargylation/Hydroamination/Aromatization Sequence. Org Lett 2018; 20:3237-3240. [DOI: 10.1021/acs.orglett.8b01100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tian-Ren Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bao-Cheng Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal College, Huanggang 438000, China
| |
Collapse
|