1
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
2
|
Hazarika H, Dutta D, Brahma S, Das B, Gogoi P. Pd-Catalyzed Alkyne and Aryne Annulations: Synthesis and Photophysical Properties of π-Extended Coumarins. J Org Chem 2023; 88:12168-12182. [PMID: 35924465 DOI: 10.1021/acs.joc.2c01187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd-catalyzed alkyne and aryne annulation strategy via C-H activation has been implemented for the synthesis of π-extended coumarins. This synthetic strategy provides a wide range of π-extended coumarins in moderate to good yields with good functional group compatibility. Photophysical properties of the synthesized π-extended coumarins have been evaluated, and some of them show interesting fluorescent properties. Three of the synthesized coumarins have been unambiguously established by a single-crystal XRD study.
Collapse
Affiliation(s)
- Hemanta Hazarika
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanfaori Brahma
- Department of Chemistry, Gauhati University, Guwahati 781014, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Belladona AL, Cardoso Dilelio M, Cargnelutti R, Barcellos T, Cruz Silveira C, Schumacher RF. Direct and Regioselective C−H Selenylation of 4‐Aminocoumarin Derivatives Mediated by Selectfluor®. ChemistrySelect 2023. [DOI: 10.1002/slct.202300377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Andrei Lucca Belladona
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Marina Cardoso Dilelio
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Roberta Cargnelutti
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products University of Caxias do Sul (UCS) 95070 560 Caxias do Sul RS Brazil
| | - Claudio Cruz Silveira
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | | |
Collapse
|
4
|
Peyrot C, Mention MM, Brunissen F, Allais F. Sinapic Acid Esters: Octinoxate Substitutes Combining Suitable UV Protection and Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9090782. [PMID: 32847133 PMCID: PMC7554726 DOI: 10.3390/antiox9090782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
In 2021, Hawaii will permanently ban the use and sale of octinoxate-based sunscreens as studies have shown serious impacts of such UV filters on the coral reef. This ban, which could be generalized to other countries, highlights the extreme need to offer alternative UV filters that are not only effective in terms of sun protection, but also healthy with regards to human health and the environment. In this context, a wide library of p-hydroxycinnamic esters deriving from naturally occurring sinapic acid has been synthesized using a Knoevenagel–Doebner condensation. The UV filtering activities as well as the antioxidant properties of these sinapic acid esters were then investigated. The results showed promising UVB protection and antioxidant efficacy. A Structure–Activity Relationship (SAR) study on the sinapic acid esters highlighted the need of a free phenol to, as expected, observe antioxidant activity, but also to obtain a higher intensity of protection. Moreover, the nature of the ester moiety also proved to be a key structural feature for the UV absorbance, as higher steric hindrance on the ester moiety leads to more active compounds. The judicious structural design of sinapic esters thus provides promising compounds combining UV protection and antioxidant activity.
Collapse
|
5
|
Birmann PT, Domingues M, Casaril AM, Smaniotto TÂ, Hartwig D, Jacob RG, Savegnago L. A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav Brain Res 2020; 396:112874. [PMID: 32835778 DOI: 10.1016/j.bbr.2020.112874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
The contribution of oxidative stress has been described in numerous studies as one of the main pathways involved in the pathophysiology of anxiety and its comorbidities, such as chronic pain. Therefore, in this study, we investigated the anxiolytic-like, antiallodynic, and anti-hyperalgesic effects of 3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (SePy) in response to acute restraint stress (ARS) in mice through the modulation of oxidative stress and neuroendocrine responses. Mice were restrained for 2 h followed by SePy (1 or 10 mg/kg, intragastrically) treatment. Behavioral, and biochemical tests were performed after further 30 min. The treatment with SePy reversed (i) the decreased time spent and the number of entries in the open arms of the elevated plus-maze apparatus, (ii) the decreased time spent in the central zone of the open field test and the increased number of grooming, (iii) the increased number of marbles buried, (iv) the increased response frequency of Von Frey Hair stimulation, and (v) the decreased latency time to nociceptive response in the hot plate test stress induced by ARS. Biochemically, SePy reversed ARS-induced increased levels of plasma corticosterone, and reversed the ARS-induced alterations in the levels of reactive species, lipid peroxidation, and superoxide dismutase and catalase activities in the prefrontal cortices and hippocampi of mice. Moreover, a molecular docking approach suggested that SePy may interact with the active site of the glucocorticoid receptor. Altogether, these results indicate that SePy attenuated anxiolytic-like behavior, hyperalgesia, and mechanical allodynia while modulating oxidative stress and neuroendocrine responses in stressed mice.
Collapse
Affiliation(s)
- Paloma T Birmann
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Angela M Casaril
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago  Smaniotto
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daniela Hartwig
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Raquel G Jacob
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Birmann PT, Casaril AM, Hartwig D, Jacob RG, Seixas FK, Collares T, Savegnago L. A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res 2020; 1741:146880. [DOI: 10.1016/j.brainres.2020.146880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
|
7
|
Penteado F, Gomes CS, Monzon LI, Perin G, Silveira CC, Lenardão EJ. Photocatalytic Synthesis of 3-Sulfanyl- and 1,3-Bis(sulfanyl)indolizines Mediated by Visible Light. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Filipe Penteado
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Caroline S. Gomes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Loana I. Monzon
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| | - Claudio C. Silveira
- Departamento de Química; Universidade Federal de Santa Maria - UFSM; CEP: 97105-900 Santa Maria RS Brazil
| | - Eder J. Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos; Universidade Federal de Pelotas - UFPel; P. O. box 354 CEP: 96010-900 Pelotas RS Brazil
| |
Collapse
|
8
|
Mostardeiro VB, Dilelio MC, Kaufman TS, Silveira CC. Efficient synthesis of 4-sulfanylcoumarins from 3-bromo-coumarins via a highly selective DABCO-mediated one-pot thia-Michael addition/elimination process. RSC Adv 2020; 10:482-491. [PMID: 35492534 PMCID: PMC9047558 DOI: 10.1039/c9ra09545d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
A facile and efficient protocol for the highly selective direct sulfanylation of 3-bromocoumarins under DABCO promotion, was developed. The transformation took place with aromatic and aliphatic thiols as well as with α,ω-dithiols, affording the expected products in very good to excellent yields. Simple and convenient ways to access 4-((ω-mercaptoalkyl) thio)coumarins and the dimeric 4,4′-(alkane-1,4-diylbis(sulfanediyl))bis(coumarins) were also devised with the use of α,ω-alkanedithiols in different ratios with regards to the starting 3-bromocoumarin. The transformation seems to proceed through the DABCO-mediated thia-Michael stereoselective addition of the thiolate anion to the α,β-unsaturated carbonyl system of the coumarin, followed by a DABCO-assisted stereoselective dehydrobromination of the resulting α-bromo carbonyl intermediate. A facile, simple and metal-free protocol for the 4-sulfanylation of 3-bromocoumarins was developed. It involves a thia-Michael addition and a dehydrobromination under DABCO assistance.![]()
Collapse
Affiliation(s)
| | - Marina C. Dilelio
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | | | | |
Collapse
|
9
|
Kumar P, Venkatakrishnan P. Expanding the Family of Fluorescent Coumarin[4]arenes: Improved Synthesis, π-Extension, and Characterization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pawan Kumar
- Department of Chemistry; Indian Institute of Technology Madras; 600 036 Chennai - Tamil Nadu India
| | | |
Collapse
|
10
|
Mari G, Ciccolini C, De Crescentini L, Favi G, Santeusanio S, Mancinelli M, Mantellini F. Metal and Oxidant-Free Brønsted Acid-Mediated Cascade Reaction to Substituted Benzofurans. J Org Chem 2019; 84:10814-10824. [PMID: 31407579 DOI: 10.1021/acs.joc.9b01363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substituted hydroxy-benzofurans are easily accessible by treatment of resorcinols and 1,2-diaza-1,3-dienes (DDs) under acidic conditions. The reaction happens through an uncommon Michael reaction between aromatic derivatives as aromatic C(sp2)-H nucleophiles and DDs as acceptors. Also, the behavior of different phenols and 2-naphthol was investigated.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Cecilia Ciccolini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry "Toso Montanari" , University of Bologna , Viale del Risorgimento 4 , 40136 Bologna (Bo) , Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences , University of Urbino "Carlo Bo" , Via I Maggetti 24 , 61029 Urbino , Province of Pesaro and Urbino , Italy
| |
Collapse
|
11
|
Synthesis and Antifungal Activity of 4‐ and 6‐(1
H
‐Pyrrol‐1‐yl) Coumarins, and their Thiocyanato Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201900842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Tanini D, Scarpelli S, Ermini E, Capperucci A. Seleno‐Michael Reaction of Stable Functionalised Alkyl Selenols: A Versatile Tool for the Synthesis of Acyclic and Cyclic Unsymmetrical Alkyl and Vinyl Selenides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Simone Scarpelli
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Elena Ermini
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| |
Collapse
|
13
|
Martins GM, do Carmo G, Morel AF, Kaufman TS, Silveira CC. A Convenient and Atom-Economic One-Pot Selenium-Chloride-Mediated Synthesis of 2-Arylselenopheno[2,3-b
]indoles and Their Antifungal Activity. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guilherme M. Martins
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria 97105-900, RS Brazil
| | - Gabriele do Carmo
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria 97105-900, RS Brazil
| | - Ademir F. Morel
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria 97105-900, RS Brazil
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR); Suipacha 531 S2002LRK Rosario Argentina
| | - Claudio C. Silveira
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria 97105-900, RS Brazil
| |
Collapse
|
14
|
Mangasuli SN, Hosamani KM, Managutti PB. Microwave assisted synthesis of coumarin-purine derivatives: An approach to in vitro anti-oxidant, DNA cleavage, crystal structure, DFT studies and Hirshfeld surface analysis. Heliyon 2019; 5:e01131. [PMID: 30723822 PMCID: PMC6350215 DOI: 10.1016/j.heliyon.2019.e01131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
An easy and efficient microwave-assisted protocol has been developed for the synthesis of coumarin-purine hybrids (3a-3j). The newly constructed 1,3-dimethyl-7-((substituted)-2-oxo-2H-chromen-4-yl)methyl)-1H-purine-2,6(3H,7H)-dione derivatives were evaluated for their in vitro antioxidant activity by DPPH free radical-scavenging ability assay and DNA cleavage by using calf thymus. The compound 3i, shows the most excellent DPPH scavenging activity with a –OH substitution at C7 of coumarin ring. In addition, the structure of compound 3f, has been elucidated using single crystal X-ray diffraction technique. Theoretical calculations (DFT) were carried out using Gaussian09 program package and B3LYP correlation function. Full geometry optimization were carried out using 6-311G++(d, p) basis set and the frontier orbital energy were presented. Hirshfeld surface analysis was used for the intermolecular interactions in the crystal structure. The experimental result of the compound 3f has been compared with the theoretical results and it was found that the experimental data are in a good agreement with the calculated values.
Collapse
Affiliation(s)
| | - Kallappa M. Hosamani
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580003, India
- Corresponding author.
| | - Praveen B. Managutti
- Department of Studies in Solid State and Structural Chemistry Unit, IISC, Bengaluru, 560012, India
| |
Collapse
|
15
|
Perin G, Soares LK, Hellwig PS, Silva MS, Neto JSS, Roehrs JA, Barcellos T, Lenardão EJ. Synthesis of 2,3-bis-organochalcogenyl-benzo[b]chalcogenophenes promoted by Oxone®. NEW J CHEM 2019. [DOI: 10.1039/c9nj00526a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report here an alternative and tunable metal-free synthesis of benzo[b]chalcogenophenes via the electrophilic cyclization of 2-functionalized chalcogenoalkynes promoted by Oxone®.
Collapse
Affiliation(s)
- Gelson Perin
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Liane K. Soares
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Paola S. Hellwig
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Marcio S. Silva
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - José S. S. Neto
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Juliano A. Roehrs
- Instituto Federal Sul-Rio-Grandense
- Campus Pelotas – Praça Vinte de Setembro
- Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products – Universidade de Caxias do Sul – UCS
- Caxias do Sul
- Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| |
Collapse
|
16
|
Quatrin PM, Dalla Lana DF, Bazana LCG, de Oliveira LFS, Lettieri Teixeira M, Silva EE, Lopes W, Canto RFS, Silveira GP, Fuentefria AM. 3-Selenocyanate-indoles as new agents for the treatment of superficial and mucocutaneous infections. NEW J CHEM 2019. [DOI: 10.1039/c8nj04935a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of resistance to the current antifungal agents is an alarming problem.
Collapse
Affiliation(s)
- Priscilla Maciel Quatrin
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Daiane Flores Dalla Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Luana Candice Genz Bazana
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | | | | | - Edilma Elaine Silva
- Departamento de Química Orgânica
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - William Lopes
- Department of Molecular Biology and Biotechnology
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Rômulo Faria Santos Canto
- Programa de Pós-Graduação em Ciências da Saúde
- Universidade Federal de Ciências da Saúde de Porto Alegre
- Porto Alegre
- Brazil
| | - Gustavo Pozza Silveira
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
- Departamento de Química Orgânica
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas
| |
Collapse
|
17
|
Sarkar D, Behera S, Ashe S, Nayak B, Seth SK. Facile TMSOI catalysed stereoselective synthesis of 2-Methylene selanyl-4-chromanols and anti-cancer activity. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|