1
|
Tamatam R, Shin D. Recent Advances in the Transition-Metal-Free Synthesis of Quinazolines. Molecules 2023; 28:molecules28073227. [PMID: 37049989 PMCID: PMC10147101 DOI: 10.3390/molecules28073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Quinazolines are a privileged class of nitrogen-containing heterocycles, widely present in a variety of natural products and synthetic chemicals with a broad spectrum of biological and medicinal activities. Owing to their pharmaceutical applications and promising biological value, a variety of synthetic methodologies have been reported for these scaffolds. From the perspective of green and sustainable chemistry, transition-metal-free synthesis provides an alternative method for accessing several biologically active heterocycles. In this review, we summarize the recent progress achieved in the transition-metal-free synthesis of quinazolines and we cover the literature from 2015 to 2022. This aspect is present alongside the advantages, limitations, mechanistic rationalization, and future perspectives associated with the synthetic methodologies.
Collapse
Affiliation(s)
- Rekha Tamatam
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
2
|
Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2113963119. [PMID: 35858440 PMCID: PMC9335285 DOI: 10.1073/pnas.2113963119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/03/2022] [Indexed: 01/21/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.
Collapse
Affiliation(s)
- Casey M. Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Svitlana O. Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amitkumar N. Pandya
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Yupeng Li
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Robyn Scott
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pooja Hegde
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pavan K. Prathipati
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinchan Liu
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jeffrey North
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
3
|
Faisal M, Saeed A. Chemical Insights Into the Synthetic Chemistry of Quinazolines: Recent Advances. Front Chem 2021; 8:594717. [PMID: 33585397 PMCID: PMC7873916 DOI: 10.3389/fchem.2020.594717] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
In medicinal chemistry, one of the most significant heterocyclic compounds are quinazolines, possessing broad range of biological properties such as anti-bacterial, anti-fungal, anti-HIV, anti-cancer, anti-inflammatory, and analgesic potencies. Owing to its numerous potential applications, in the past two decades, there is an increase in the importance of designing novel quinazolines, exploring promising routes to synthesize quinazolines, investigating different properties of quinazolines, and seeking for potential applications of quinazolines. The present review article describes synthesis of quinazolines via eco-friendly, mild, atom-efficient, multi-component synthetic strategies reported in the literature. The discussion is divided into different parts as per the key methods involved in the formation of quinazoline skeletons, aiming to provide readers an effective methodology to a better understanding. Consideration has been taken to cover the most recent references. Expectedly, the review will be advantageous in future research for synthesizing quinazolines and developing more promising synthetic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
4
|
Jirgensons A, Solomin VV, Seins A. 2-Aminoquinazolines by Chan–Evans–Lam Coupling of Guanidines with (2-Formylphenyl)boronic Acids. Synlett 2020. [DOI: 10.1055/s-0040-1707080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new method is presented for the synthesis of 2-aminoquinazolines, which is based on a Chan–Evans–Lam coupling of (2-formylphenyl)boronic acids with guanidines. Relatively mild conditions involving the use of inexpensive CuI as a catalyst and methanol as a solvent permit the application of the method to a wide range of substrates. Nonsubstituted, N-monosubstituted, and N,N-disubstituted guanidines can be used as reactants to give the corresponding 2-aminoquinazolines in moderate yields from readily available (2-formylphenyl)boronic acids.
Collapse
Affiliation(s)
- Aigars Jirgensons
- Latvian Institute of Organic Synthesis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University
| | - Vitalii V. Solomin
- Latvian Institute of Organic Synthesis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University
| | - Alberts Seins
- Latvian Institute of Organic Synthesis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University
| |
Collapse
|
5
|
Hachiya I, Nagoshi S, Shimizu M. Titanium Tetraiodide/Trimethylsilyl Iodide Synergistically Induced Cyclization of N-(2-Cyanophenyl)benzamides into 2-Aryl-4-iodoquinazolines. ACS OMEGA 2019; 4:10463-10473. [PMID: 31460142 PMCID: PMC6648542 DOI: 10.1021/acsomega.9b01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Synthesis of 2-aryl-4-iodoquinazolines is developed using titanium tetraiodide/trimethylsilyl iodide synergistically induced cyclization of N-(2-cyanophenyl)benzamides. The cyclization reactions proceeded to give the 2-aryl-4-iodoquinazolines in moderate to high yields. Remarkable synergetic effect of titanium tetraiodide and trimethylsilyl iodide was observed to promote the cyclization. The method was applied to the formal synthesis of a potent analgesic agent.
Collapse
Affiliation(s)
- Iwao Hachiya
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Shintaro Nagoshi
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Makoto Shimizu
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
- School
of Energy Science and Engineering, Nanjing
Tech University, Nanjing 211816, Jiangsu Province, China
| |
Collapse
|
6
|
Jatangi N, Palakodety RK. I 2-Catalyzed oxidative synthesis of N,4-disubstituted quinazolines and quinazoline oxides. Org Biomol Chem 2019; 17:3714-3717. [PMID: 30882837 DOI: 10.1039/c9ob00349e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy and efficient approach to the synthesis of N,4-disubstituted quinazoline-2-amine and oxides is described. This transformation proceeds smoothly in the presence of molecular iodine. The metal-free protocol presented here is insensitive to air moisture and operationally simple. This versatile and synthetic methodology is broadly applicable to a variety of N,4-disubstituted quinazoline-2-amines and oxides, which are synthesized in good to excellent yields starting from readily available inexpensive precursors.
Collapse
Affiliation(s)
- Nagesh Jatangi
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | | |
Collapse
|
7
|
Abstract
An efficient procedure for the copper-catalyzed cross-coupling between a broad range of cyanamides and iodoalkenes is reported. Upon reaction with catalytic amounts of copper(I) iodide and 2,2'-bisimidazole in the presence of cesium carbonate in DMF at 80 °C, a fast, regioselective, and stereoretentive cross-coupling occurs. This reaction, which was found to have a broad substrate scope, provides the first general entry to N-alkenylcyanamides, building blocks that hold great synthetic potential.
Collapse
Affiliation(s)
- Antoine Nitelet
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur , 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Damien F Dewez
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| |
Collapse
|