1
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Zarrinzadeh G, Tajbakhsh M, Hosseinzadeh R, Khalilzadeh MA, Hosseinzadeh M. Biological Evaluation and Molecular Docking Study of Euparin and Its Maleic Anhydride and Semicarbazide Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ghazaleh Zarrinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad A. Khalilzadeh
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- Department of Chemistry, College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
3
|
Tao L, Zhuo YT, Qiao ZH, Li J, Tang HX, Yu QM, Liu YY, Liu YP. Prenylated coumarins from the fruits of Artocarpus heterophyllus with their potential anti-inflammatory and anti-HIV activities. Nat Prod Res 2021; 36:2526-2533. [PMID: 33949253 DOI: 10.1080/14786419.2021.1913590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A phytochemical investigation on the fruits of Artocarpus heterophyllus led to the isolation and characterisation of a new prenylated coumarin, artoheteronin (1), together with six known analogues (2-7). The chemical structure of 1 was elucidated using extensive spectral methods and the known compounds (2-7) were identified by comparing their spectral data with those reported in the literature. All known compounds (2-7) were isolated from the genus Artocarpus for the first time. The anti-inflammatory and anti-HIV activities of all isolated prenylated coumarins (1-7) were assessed in vitro. As a result, compounds 1-7 displayed notable inhibitory effects against nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro with the IC50 values in range of 0.58 ± 0.06 to 6.29 ± 0.12 μM. Meanwhile, compounds 1-7 exhibited notable anti-HIV-1 reverse transcriptase (RT) activities possessing EC50 values in the range of 0.18 to 9.12 µM.
Collapse
Affiliation(s)
- Lei Tao
- Nanjing Institute for Food and Drug Control, Nanjing, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Ya-Ting Zhuo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Ze-Hua Qiao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Juan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Hao-Xuan Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Qiao-Mei Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yun-Yao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | - Yan-Ping Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| |
Collapse
|
4
|
Wang XQ, Ye PT, Bai MJ, Miu WH, Yang ZX, Duan SY, Li TT, Li Y, Yang XD. Synthesis and biological activity of new bisbenzofuran-imidazolium salts. Bioorg Med Chem Lett 2020; 30:127210. [PMID: 32359853 DOI: 10.1016/j.bmcl.2020.127210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
A series of novel bisbenzofuran-imidazolium salts were designed and prepared. The in vitro antitumor activity of these derivatives was evaluated against a panel of human tumor cell lines (A549, HL-60, MCF-7, SMMC-7721 and SW480). Results demonstrated that 2-methyl-benzimidazole ring and substitution of the imidazolyl-3-position with a 4-methoxyphenacyl or 2-naphthylacyl substituent were important for promoting cytotoxic activity. Notably, compound 23 was found to be the most potent compound with IC50 values of 0.64-1.47 μM against five human tumor cell lines, and exhibited higher selectivity to MCF-7 and SW-480 cell lines with IC50 values 15.3-fold and 9.1-fold lower than DDP.
Collapse
Affiliation(s)
- Xue-Quan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Ping-Ting Ye
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Meng-Jiao Bai
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Wei-Hang Miu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Zhi-Xin Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Su-Yue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661100, PR China
| | - Tian-Tian Li
- Department of Soil and Water Science, University of Florida, 2181 McCarty Hall A, Gainesville, FL 32611-0290, USA
| | - Yan Li
- State Key Laboratory for Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, PR China.
| | - Xiao-Dong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
5
|
Wu XY, Chen XM, Zhou MX, Hu HX, Zhang JZ, Wang XN, Ren DM, Lou HX, Shen T. Artocarmitin B enhances intracellular antioxidant capacity via activation of Nrf2 signaling pathway in human lung epithelial cells. Chem Biol Interact 2019; 310:108741. [DOI: 10.1016/j.cbi.2019.108741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023]
|
6
|
Miao YH, Hu YH, Yang J, Liu T, Sun J, Wang XJ. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Adv 2019; 9:27510-27540. [PMID: 35529241 PMCID: PMC9070854 DOI: 10.1039/c9ra04917g] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Benzofuran compounds are a class of compounds that are ubiquitous in nature. Numerous studies have shown that most benzofuran compounds have strong biological activities such as anti-tumor, antibacterial, anti-oxidative, and anti-viral activities. Owing to these biological activities and potential applications in many aspects, benzofuran compounds have attracted more and more attention of chemical and pharmaceutical researchers worldwide, making these substances potential natural drug lead compounds. For example, the recently discovered novel macrocyclic benzofuran compound has anti-hepatitis C virus activity and is expected to be an effective therapeutic drug for hepatitis C disease; novel scaffold compounds of benzothiophene and benzofuran have been developed and utilized as anticancer agents. Novel methods for constructing benzofuran rings have been discovered in recent years. A complex benzofuran derivative is constructed by a unique free radical cyclization cascade, which is an excellent method for the synthesis of a series of difficult-to-prepare polycyclic benzofuran compounds. Another benzofuran ring constructed by proton quantum tunneling has not only fewer side reactions, but also high yield, which is conducive to the construction of complex benzofuran ring systems. This review summarizes the recent studies on the various aspects of benzofuran derivatives including their important natural product sources, biological activities and drug prospects, and chemical synthesis, as well as the relationship between the bioactivities and structures.
Collapse
Affiliation(s)
- Yu-Hang Miao
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Yu-Heng Hu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Yang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Teng Liu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Xiao-Jing Wang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
7
|
Wu X, Li M, Wang X, Shen T, Wang S, Ren D. Two new 2-arylbenzofurnan derivatives from the leaves of Morus alba. Nat Prod Res 2018. [PMID: 29516755 DOI: 10.1080/14786419.2018.1443095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two new 2-arylbenzofuran derivatives, moracinfurol A and B (1-2), and ten known compounds (3-12) were isolated from the leaves of Morus alba. Their structures were determined on the basis of spectroscopic analysis including 1D, 2D NMR and HR-ESI-MS. All of the 2-arylbenzofuran derivatives were evaluated for cytotoxicity against A549 cells. Some cytotoxic 2-arylbenzofuran derivatives might induce autophagy characterized by the accumulation of LC-3 Ⅱ.
Collapse
Affiliation(s)
- Xuewei Wu
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| | - Ming Li
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| | - Xiaoning Wang
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| | - Tao Shen
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| | - Shuqi Wang
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| | - Dongmei Ren
- a Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R. China
| |
Collapse
|