1
|
Bansal R, Butcher RJ, Gupta SK. Synthesis, crystal structure, Hirshfeld surface analysis, DFT and NBO study of ethyl 1-(4-fluoro-phen-yl)-4-[(4-fluoro-phen-yl)amino]-2,6-diphenyl-1,2,5,6-tetra-hydro-pyridine-3-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2023; 79:877-882. [PMID: 37817948 PMCID: PMC10561203 DOI: 10.1107/s205698902300748x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
The title com-pound, C32H28F2N2O2, a highly functionalized tetra-hydro-pyridine, was synthesized by a one-pot multi-com-ponent reaction of 4-fluoro-aniline, ethyl aceto-acetate and benzaldehyde at room temperature using sodium lauryl sulfate as a catalyst. The com-pound crystallizes with two mol-ecules in the asymmetric unit. The tetra-hydro-pyridine ring adopts a distorted boat conformation in both mol-ecules and the dihedral angles between the planes of the fluoro-substituted rings are 77.1 (6) and 77.3 (6)°. The amino group and carbonyl O atom are involved in an intra-molecular N-H⋯O hydrogen bond, thereby generating an S(6) ring motif. In the crystal, mol-ecules are linked by C-H⋯F hydrogen bonds forming a three-dimensional network and C-H⋯π inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.9%), C⋯H/H⋯C (30.7%) and F⋯H/H⋯F (12.4%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311+G(2d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was used to determine the energy gap and the Natural Bond Orbital (NBO) analysis was done to study donor-acceptor interconnections.
Collapse
Affiliation(s)
- Ravi Bansal
- School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| | - Sushil K. Gupta
- School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
2
|
Saleem F, Shamim F, Özil M, Baltaş N, Salar U, Ashraf S, Ul-Haq Z, Taha M, Solangi M, Khan KM. Multicomponent diastereoselective synthesis of tetrahydropyridines as α-amylase and α-glucosidase enzymes inhibitors. Future Med Chem 2023; 15:1343-1368. [PMID: 37650736 DOI: 10.4155/fmc-2023-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Researchers seeking new drug candidates to treat diabetes mellitus have been exploring bioactive molecules found in nature, particularly tetrahydropyridines (THPs). Methods: A library of THPs (1-31) were synthesized via a one-pot multicomponent reaction and investigated for their inhibition potential against α-glucosidase and α-amylase enzymes. Results: A nitrophenyl-substituted compound 5 with IC50 values of 0.15 ± 0.01 and 1.10 ± 0.04 μM, and a Km value of 1.30 mg/ml was identified as the most significant α-glucosidase and α-amylase inhibitor, respectively. Kinetic studies revealed the competitive mode of inhibition, and docking studies revealed that compound 5 binds to the enzyme by establishing hydrophobic and hydrophilic interactions and a salt bridge interaction with His279. Conclusion: These molecules may be a potential drug candidate for diabetes in the future.
Collapse
Affiliation(s)
- Faiza Saleem
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fariha Shamim
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Uzma Salar
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sajda Ashraf
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| | - Mehwish Solangi
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
3
|
Woldegiorgis AG, Muhammad S, Lin X. Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xufeng Lin
- Zhejiang University Department of Chemistry 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
4
|
Slathia N, Gupta A, Kapoor K. I2/ TBHP Reagent System: A Modern Paradigm for Organic Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kamal Kapoor
- University of Jammu Department of Chemistry Department of Chemistry 180006 Jammu INDIA
| |
Collapse
|
5
|
Caputo S, Kovtun A, Bruno F, Ravera E, Lambruschini C, Melucci M, Moni L. Study and application of graphene oxide in the synthesis of 2,3-disubstituted quinolines via a Povarov multicomponent reaction and subsequent oxidation. RSC Adv 2022; 12:15834-15847. [PMID: 35733657 PMCID: PMC9135005 DOI: 10.1039/d2ra01752k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
The carbocatalyzed synthesis of 2,3-disubstituted quinolines is disclosed. This process involved a three-component Povarov reaction of anilines, aldehydes and electron-enriched enol ethers, which gave the substrate for the subsequent oxidation. Graphene oxide (GO) was exploited as a heterogeneous, metal-free and sustainable catalyst for both transformations. The multicomponent reaction proceeded under simple and mild reaction conditions, exhibited good functional group tolerance, and could be easily scaled up to the gram level. A selection of tetrahydroquinolines obtained was subsequently aromatized to quinolines. The multistep synthesis could also be performed as a one-pot procedure. Investigation of the real active sites of GO was carried out by performing control experiments and a by full characterization of the carbon material by X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (ssNMR).
Collapse
Affiliation(s)
- Samantha Caputo
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF) Via Gobetti 101 40129 BOLOGNA Italy
| | - Francesco Bruno
- Magnetic Resonance Center (CERM), University of Florence Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Florence Data -scienze, University of Florence Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF) Via Gobetti 101 40129 BOLOGNA Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| |
Collapse
|
6
|
Intramolecular oxidative rearrangement: I2/TBHP/DMSO-mediated metal free facile access to quinoxalinone derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Pratibha, Rajput JK. Autocombustion‐Promoted Synthesis of Lanthanum Iron Oxide: Application as Heterogeneous Catalyst for Synthesis of Piperidines, Substituted Amines and Light‐Assisted Degradations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pratibha
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| | - Jaspreet K. Rajput
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| |
Collapse
|
8
|
Wu L, Yan S, Wang W, Li Y. Multicomponent reaction for the synthesis of highly functionalized piperidine scaffolds catalyzed by TMSI. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Rai VK, Mahata S, Kashyap H, Singh M, Rai A. Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Curr Org Synth 2020; 17:164-191. [PMID: 32538718 DOI: 10.2174/1570179417666200115110403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/28/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
Abstract
This work is based on various bio-reduction of graphene oxide into reduced graphene oxide and their applications in organic synthesis and group transformations. Graphene oxide, with abundant oxygencontaining functional groups on its basal plane, provides potential advantages, including excellent dispersibility in solvents and the good heterogeneous catalyst. This manuscript reviews various methods of synthesis of graphene and graphene oxide and a comparative study on their advantages and disadvantages, how to overcome disadvantages and covers extensive relevant literature review. In the last few years, investigation based on replacing the chemical reduction methods by some bio-compatible, chemical/impurity-free rGO including flash photo reductions, hydrothermal dehydration, solvothermal reduction, electrochemical approach, microwave-assisted reductions, light and radiation-induced reductions has been reported. Particularly, plant extracts have been applied significantly as an efficient reducing agent due to their huge bioavailability and low cost for bio-reduction of graphene oxide. These plant extracts mainly contain polyphenolic compounds, which readily get oxidized to the corresponding unreactive quinone form, which are the driving force for choosing them as bio-compatible catalyst. Currently, efforts are being made to develop biocompatible methods for the reduction of graphene oxide. The reduction abilities of such phytochemicals have been reported in the synthesis and stabilization of various nanoparticles viz. Ag, Au, Fe and Pd. Various part of plant extract has been applied for the green reduction of graphene oxide. Furthermore, the manuscript describes the catalytic applications of graphene oxide and reduced graphene oxide nanosheets as efficient carbo-catalysts for valuable organic transformations. Herein, important works dedicated to exploring graphene-based materials as carbocatalysts, including GO and rGO for organic synthesis including various functional group transformations, oxidation, reduction, coupling reaction and a wide number of multicomponent reactions have been highlighted. Finally, the aim of this study is to provide an outlook on future trends and perspectives for graphene-based materials in metal-free carbo-catalysis in green synthesis of various pharmaceutically important moieties.
Collapse
Affiliation(s)
- Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Hemant Kashyap
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
10
|
Singh S, Gupta A, Kapoor KK. Facile one-pot multicomponent synthesis of highly functionalized tetrahydropyridines using thiamine hydrochloride as an organocatalyst. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1731756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sandeep Singh
- Department of Chemistry, University of Jammu, Jammu, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
11
|
Zhang W, Hu Z, Yan S, He S, Li S. Bis(1,3-dimethylimidazolidinone) Hydrotribromide (DITB) Promoted Multicomponent Reaction for the Synthesis of Highly Functionalized Piperidines. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Gupta A, Sasan S, Kour A, Nelofar N, Manikrao Mondhe D, Kapoor KK. Triarylimidazo[1,2- a]pyridine-8-carbonitriles: solvent-free synthesis and their anti-cancer evaluation. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1605445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annah Gupta
- Department of Chemistry, University of Jammu, Jammu, India
| | - Sonakshi Sasan
- Department of Chemistry, University of Jammu, Jammu, India
| | - Avneet Kour
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu, India
| | | | - Dilip Manikrao Mondhe
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu, India
| | | |
Collapse
|
13
|
Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2017-0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this research, initial production and characterization of a novel Brønsted-acidic ionic liquid, namely, N,N,N′,N′-tetramethylethylenediaminium-N,N′-disulfonic acid hydrogen sulfate ([TMEDSA][HSO4]2), has been described (characterization was achieved using Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass and thermal gravimetric spectra). Thereafter, utilization of [TMEDSA][HSO4]2 as a highly effectual catalyst for the synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives through the one-pot pseudo five-component reaction of phenylhydrazine (2 eq.) with ethyl acetoacetate (2 eq.) and arylaldehydes (1 eq.) in relatively mild conditions, has been reported.
Collapse
|
14
|
Khan MM, Khan S, Saigal, Sahoo SC. Efficient and Eco-Friendly One-Pot Synthesis of Functionalized Furan-2-one, Pyrrol-2-one, and Tetrahydropyridine Using Lemon Juice as a Biodegradable Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201702933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Musawwer Khan
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Sarfaraz Khan
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Saigal
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Subash C. Sahoo
- Department of Chemistry; Punjab University; Chandigarh- 160014 India
| |
Collapse
|
15
|
Reddy MS, Kumar NS, Chowhan LR. Heterogeneous graphene oxide as recyclable catalyst for azomethine ylide mediated 1,3 dipolar cycloaddition reaction in aqueous medium. RSC Adv 2018; 8:35587-35593. [PMID: 35547897 PMCID: PMC9088037 DOI: 10.1039/c8ra06714g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
Graphene oxide (GO) catalyzed regio and diastereoselective synthesis of spiro-indenoquinoxaline pyrrolizidines and spiro-oxindoles pyrrolizidines is described with good substrate scope and yield using azomethine ylide under aq. EtOH condition at RT.
Collapse
Affiliation(s)
- Marri Sameer Reddy
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Nandigama Satish Kumar
- Nanoscience and Nanotechnology Laboratory
- Department of Chemistry
- Gitam Institute of Sciences
- Gitam University
- Visakhapatnam 530045
| | - L. Raju Chowhan
- Centre for Applied Chemistry
- Central University of Gujarat
- Gandhinagar-382030
- India
| |
Collapse
|
16
|
Ramesh R, Maheswari S, Arivazhagan M, Malecki JG, Lalitha A. Cyanuric chloride catalyzed metal-free mild protocol for the synthesis of highly functionalized tetrahydropyridines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|