1
|
Ishii D, Hirashima S, Akutsu H, Nakashima K, Matsushima Y, Sakai T, Miura T. Asymmetric Direct Vinylogous Conjugate Addition of Substituted Furanone Derivatives to (
E
)‐ and (
Z)
‐Benzoyl Acrylonitriles Using Organocatalysts. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daiki Ishii
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Shin‐ichi Hirashima
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Hiroshi Akutsu
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Kosuke Nakashima
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Yasuyuki Matsushima
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Takaaki Sakai
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| | - Tsuyoshi Miura
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
2
|
Nakashima K, Minai A, Okuaki Y, Matsushima Y, Hirashima SI, Miura T. Organocatalytic one-pot asymmetric synthesis of 6-trifluoromethyl-substituted 7,8-dihydrochromen-6-ol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Kawada M, Tsuyusaki R, Nakashima K, Yamada M, Kozakai A, Matsushima Y, Hirashima SI, Miura T. Asymmetric Henry reaction of trifluoromethyl enones with nitromethane using a N,N-dibenzyl diaminomethylenemalononitrile organocatalyst. Chem Asian J 2021; 17:e202101299. [PMID: 34927372 DOI: 10.1002/asia.202101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Indexed: 11/10/2022]
Abstract
A novel N,N -dibenzyl diaminomethylenemalononitrile organocatalyst efficiently promoted asymmetric Henry reactions of trifluoromethyl enones with nitromethane, affording corresponding highly functionalized products in high yields with excellent enantioselectivities (up to 90% ee). This study is the first to report the successful example of the asymmetric 1,2-additions of nitromethane to trifluoromethyl enones.
Collapse
Affiliation(s)
- Masahiro Kawada
- Tokyo Yakka Daigaku Yakugakubu Daigakuin Yakugaku Kenkyuka, School of Pharmacy, JAPAN
| | - Ryo Tsuyusaki
- Tokyo Yakka Daigaku Yakugakubu Daigakuin Yakugaku Kenkyuka, school of pharmacy, JAPAN
| | - Kosuke Nakashima
- Tokyo Yakka Daigaku Yakugakubu Daigakuin Yakugaku Kenkyuka, School of pharmacy, JAPAN
| | | | | | | | | | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, 1432-1 Horinouchi, Hachioji, 192-0392, Tokyo, JAPAN
| |
Collapse
|
4
|
Kawada M, Tsuyusaki R, Nakashima K, Akutsu H, Hirashima SI, Matsumoto T, Yanai H, Miura T. Diaminomethylenemalononitrile as a Chiral Single Hydrogen Bond Catalyst: Application to Enantioselective Conjugate Addition of α-Branched Aldehydes. Chem Asian J 2021; 16:2272-2275. [PMID: 34216113 DOI: 10.1002/asia.202100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Indexed: 11/09/2022]
Abstract
An improved diaminomethylenemalononitrile organocatalyst, bearing a N,N-disubstituted structure, promoted enantioselective conjugate addition reaction of α-branched aldehydes with vinyl sulfone, affording adducts with excellent enantioselectivities (up to 96% ee). Mechanistic studies revealed that the diaminomethylenemalononitrile motif holds the vinyl sulfone substrate using a single hydrogen bond accompanied by multiple weak interactions, including electrostatic C-H⋅⋅⋅O interactions.
Collapse
Affiliation(s)
- Masahiro Kawada
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ryo Tsuyusaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kosuke Nakashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Akutsu
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shin-Ichi Hirashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Miura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
5
|
Lane JDE, Berry SN, Lewis W, Ho J, Jolliffe KA. Diaminomethylenemalononitriles and Diaminomethyleneindanediones as Dual Hydrogen Bond Donors for Anion Recognition. J Org Chem 2021; 86:4957-4964. [PMID: 33755453 DOI: 10.1021/acs.joc.0c02801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diaminomethylenemalononitriles (DMMs) and diaminomethyleneindanediones (DMIs) are dual H-bond donors that have previously been used as organocatalysts, but their anion binding ability has not been investigated. We report the synthesis of both alkyl- and aryl-substituted DMMs and DMIs, together with a comparison of their anion binding ability with that of the analogous thioureas. The DMMs display affinity for monovalent anions, with similar anion binding affinities observed to that of the thioureas in acetonitrile, albeit with differing trends for the N,N'-dialkyl versus N,N'-diaryl compounds. In contrast, the DMIs do not bind to monovalent anions under similar conditions as a result of conformational locking through the formation of intramolecular H-bonds. This can be overcome upon addition of sulfate ions, and binding of sulfate is enhanced in a more competitive solvent (DMSO).
Collapse
Affiliation(s)
- Jakob D E Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart N Berry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Ishii D, Hirashima SI, Nakashima K, Akutsu H, Sakai T, Matsushima Y, Kawada M, Miura T. Asymmetric Direct Vinylogous Conjugate Addition of Substituted Furanone Derivatives to Benzoyl Acrylonitrile: Stereoselective Synthesis Toward Bicyclic γ-Lactams. Org Lett 2020; 23:480-485. [DOI: 10.1021/acs.orglett.0c04004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daiki Ishii
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Akutsu
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takaaki Sakai
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuyuki Matsushima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Kawada
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
7
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
8
|
Akutsu H, Ito M, Kawada M, Nakashima K, Hirashima SI, Miura T. Organocatalytic asymmetric conjugate addition of substituted 5-benzylfurfurals to nitroalkenes based on stereocontrol of trienamine. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Arai R, Hirashima SI, Nakano T, Kawada M, Akutsu H, Nakashima K, Miura T. Asymmetric Conjugate Addition of Phosphonates to Enones Using Cinchona–Diaminomethylenemalononitrile Organocatalysts. J Org Chem 2020; 85:3872-3878. [PMID: 31986038 DOI: 10.1021/acs.joc.9b02553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryoga Arai
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsuki Nakano
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Kawada
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Akutsu
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Kaur M, Van Humbeck JF. Recent trends in catalytic sp 3 C-H functionalization of heterocycles. Org Biomol Chem 2020; 18:606-617. [PMID: 31912069 DOI: 10.1039/c9ob01559k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
11
|
Xu C, Li H, He X, Du W, Chen Y. Asymmetric Direct Remote Michael Addition Reactions of Allyl Furfurals via Dearomative Trienamine and Tetraenamine Catalysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chang‐Jiang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| | - Hong‐Wei Li
- College of PharmacyThird Military Medical University Chongqing 400038 China
| | - Xiao‐Long He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
- College of PharmacyThird Military Medical University Chongqing 400038 China
| |
Collapse
|
12
|
Highly efficient asymmetric conjugate addition of 5-benzylfurfurals to nitroalkenes using a thiourea organocatalyst. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Przydacz A, Skrzyńska A, Albrecht Ł. Unterbrechung der Aromatizität mittels Aminokatalyse: Eine einfache Strategie für die asymmetrische Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Artur Przydacz
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Polen
| | - Anna Skrzyńska
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Polen
| | - Łukasz Albrecht
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Polen
| |
Collapse
|
14
|
Przydacz A, Skrzyńska A, Albrecht Ł. Breaking Aromaticity with Aminocatalysis: A Convenient Strategy for Asymmetric Synthesis. Angew Chem Int Ed Engl 2018; 58:63-73. [DOI: 10.1002/anie.201808197] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Artur Przydacz
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| | - Anna Skrzyńska
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
15
|
Arai R, Hirashima SI, Kondo J, Nakashima K, Koseki Y, Miura T. Cinchona-Diaminomethylenemalononitrile Organocatalyst for the Highly Enantioselective Hydrophosphonylation of Ketones and Enones. Org Lett 2018; 20:5569-5572. [PMID: 30199261 DOI: 10.1021/acs.orglett.8b02241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of diaminomethylenemalononitrile (DMM) organocatalyst to promote the challenging 1,2-hydrophosphonylation of simple ketones and enones, which are also called α,β-unsaturated ketones, is proposed and validated. This reaction provided the corresponding chiral α-hydroxy phosphonates in high to excellent yields and with enantioselectivity up to 96% ee.
Collapse
Affiliation(s)
- Ryoga Arai
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Shin-Ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Junko Kondo
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Yuji Koseki
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| |
Collapse
|