1
|
Hatanaka R, Taguchi A, Nagao Y, Yorimoto K, Takesato A, Masuda K, Ono T, Samukawa Y, Tanizawa Y, Ohta Y. The flavonoid Sudachitin regulates glucose metabolism via PDE inhibition. Heliyon 2024; 10:e35978. [PMID: 39224336 PMCID: PMC11367099 DOI: 10.1016/j.heliyon.2024.e35978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Sudachitin, a member of the flavonoid family, reportedly improves glucose metabolism after long-term administration, but details of the underlying mechanisms are unknown. We found that Sudachitin approximately doubles insulin secretion under high glucose concentrations in mouse pancreatic islets and MIN6 cells. When Sudachitin was orally administered to mice, early-phase insulin secretion was increased and a 30 % reduction in blood glucose levels was demonstrated 30 min after glucose loading. Insulin tolerance tests also showed Sudachitin to increase systemic insulin sensitivity. Additionally, we observed that Sudachitin raised intracellular cAMP levels in pancreatic islets. Phosphodiesterase (PDE) activity assays revealed Sudachitin to inhibit PDE activity and computer simulations predicted a high binding affinity between PDEs and Sudachitin. These findings suggest that Sudachitin enhances both insulin secretion and insulin sensitivity via an increase in intracellular cAMP resulting from PDE inhibition. These insights may facilitate understanding the mechanisms underlying the regulation of glucose metabolism by Sudachitin and other isoflavones.
Collapse
Affiliation(s)
- Ryoko Hatanaka
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yuko Nagao
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kaito Yorimoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akari Takesato
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Konosuke Masuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Takao Ono
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yoshishige Samukawa
- Quality Assurance Headquarters, Taisho Pharmaceutical Co., Ltd., 3-24-1, Takada, Toshima-ku, Tokyo, 170-8633, Japan
| | - Yukio Tanizawa
- Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8511, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
2
|
Noguchi K, Umeda S, Goma M, Ueda C, Tabira S, Furuyama K, Taniguchi M, Nagai A, Matsushita M, Kanae H. Chronotropic and Inotropic Effects of Sudachitin, a Polymethoxyflavone from the Peel of Citrus sudachi on Isolated Rat Atria and Its Underlying Mechanisms. Biol Pharm Bull 2024; 47:2011-2020. [PMID: 39647904 DOI: 10.1248/bpb.b24-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Sudachitin, a polymethoxyflavone found in sudachi peel, has been reported to improve hyperlipidemia in humans, and is thus attracting research attention. However, its effect on cardiac function remains unclear. We investigated the mechanisms underlying the chronotropic and inotropic effects of sudachitin on rat atria. Sudachitin (0.3-30 µM) produced concentration-dependent positive chronotropic and inotropic effects. Other polymethoxyflavones, including demethoxysudachitin (0.3-30 µM) and nobiletin (0.3-30 µM), also produced positive chronotropic and inotropic effects; however, the maximum efficacy of all polymethoxyflavones, including sudachitin, was lower than that of isoproterenol. Propranolol (0.1 µM) did not affect the positive chronotropic and inotropic effects of sudachitin. The concentration-response curves for the chronotropic and inotropic effects of dibutyryl-cAMP (1-100 µM) were shifted to the left upon pretreatment with sudachitin (3, 10 µM). Phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine 1 µM or milrinone 10 µM) alone, sudachitin alone (10, 30 µM), and a combination of phosphodiesterase inhibitors and sudachitin exhibited positive chronotropic and inotropic effects, whereas the lack of any interaction between each phosphodiesterase inhibitor and sudachitin indicated an additive effect of the two substances. These results suggest that sudachitin-induced positive chronotropic and inotropic effects similar to those of other polymethoxyflavones, but its maximum efficacy was lower than that of isoproterenol. Both demethoxysudachitin and nobiletin exhibited similar positive chronotropic and inotropic effects, indicating that these effects are not specific to sudachitin, but are common to polymethoxyflavones. The mechanism of action of sudachitin was associated with the enhancement of cAMP-dependent pathways, without the involvement of β-adrenoceptors.
Collapse
Affiliation(s)
- Kazuo Noguchi
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Saki Umeda
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Misaki Goma
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Chinami Ueda
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Sawako Tabira
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Koto Furuyama
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Mirai Taniguchi
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Aino Nagai
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Midori Matsushita
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Haruna Kanae
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
3
|
Seoka M, Ma G, Zhang L, Yahata M, Yamawaki K, Kan T, Kato M. Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci Rep 2020; 10:15288. [PMID: 32943728 PMCID: PMC7498457 DOI: 10.1038/s41598-020-72277-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Nobiletin, a polymethoxy flavone (PMF), is specific to citrus and has been reported to exhibit important health-supporting properties. Nobiletin has six methoxy groups at the 3′,4′,5,6,7,8-positions, which are catalyzed by O-methyltransferases (OMTs). To date, researches on OMTs in citrus fruit are still limited. In the present study, a novel OMT gene (CitOMT) was isolated from two citrus varieties Satsuma mandarin (Citrus unshiu Marc.) and Ponkan mandarin (Citrus reticulata Blanco), and its function was characterized in vitro. The results showed that the expression of CitOMT in the flavedo of Ponkan mandarin was much higher than that of Satsuma mandarin during maturation, which was consistent with the higher accumulation of nobiletin in Ponkan mandarin. In addition, functional analysis showed that the recombinant protein of CitOMT had methylation activity to transfer a methyl group to 3′-hydroxy group of flavones in vitro. Because methylation at the 3′-position of flavones is vital for the nobiletin biosynthesis, CitOMT may be a key gene responsible for nobiletin biosynthesis in citrus fruit. The results presented in this study will provide new strategies to enhance nobiletin accumulation and improve the nutritional qualities of citrus fruit.
Collapse
Affiliation(s)
- Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Gang Ma
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Kazuki Yamawaki
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masaya Kato
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan. .,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.
| |
Collapse
|
4
|
K Kaneko Y, Kan T, Ishikawa T. [Citrus flavonoids as a target for the prevention of pancreatic β-cells dysfunction in diabetes.]. Nihon Yakurigaku Zasshi 2020; 155:209-213. [PMID: 32612030 DOI: 10.1254/fpj.20024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) has rapidly increased, especially in East and Southeast Asia. In these areas, in general, people have especially vulnerable β-cells and insulin secretion deficiency and reduced β-cell mass are the primary cause of T2DM. Therefore, the alleviation of such β-cell dysfunction would provide therapeutic approaches to prevent the development of T2DM. Nobiletin, a polymethoxylated flavonoid found in citrus fruits, has been shown to improve obesity and insulin resistance in T2DM model mice. We focused on β-cells and investigated the effects of nobiletin on insulin secretion and β-cell apoptosis. In β-cell line INS-1, nobiletin increased glucose-induced insulin secretion (GSIS) in a concentration-dependent manner, which was inhibited by an Epac inhibitor. In addition, nobiletin at 10 μM inhibited thapsigargin-induced apoptosis, which was inhibited by a PKA inhibitor. Nobiletin also suppressed thapsigargin-induced increases in cleaved caspase-3 and phosphorylated JNK. Thus, nobiletin is suggested to promote GSIS and prevent ER stress-induced β-cell apoptosis, which are mediated via Epac and PKA-dependent pathways, respectively. In summary, nobiletin is suggested to exhibit insulinotropic and anti-apoptotic effects on β-cells, which are one of the causes of its anti-diabetic effect. Moreover, nobiletin seems to be able to alleviate the development of T2DM by protecting β-cells from apoptosis.
Collapse
Affiliation(s)
- Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshiyuki Kan
- Department of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Asakawa T, Sagara H, Kanakogi M, Hiza A, Tsukaguchi Y, Ogawa T, Nakayama M, Ouchi H, Inai M, Kan T. Practical Synthesis of Polymethylated Flavones: Nobiletin and Its Desmethyl Derivatives. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomohiro Asakawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Hiroto Sagara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masaki Kanakogi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Aiki Hiza
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Tsukaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takahiro Ogawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Miho Nakayama
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|