1
|
Noki S, de la Torre BG, Albericio F. Safety-Catch Linkers for Solid-Phase Peptide Synthesis. Molecules 2024; 29:1429. [PMID: 38611709 PMCID: PMC11012524 DOI: 10.3390/molecules29071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.
Collapse
Affiliation(s)
- Sikabwe Noki
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials, and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Gless BH, Olsen CA. On-Resin Peptide Cyclization Using the 3-Amino-4-(Methylamino)Benzoic Acid MeDbz Linker. Methods Mol Biol 2022; 2371:101-115. [PMID: 34596845 DOI: 10.1007/978-1-0716-1689-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cyclic peptides are becoming increasingly important in drug discovery due to their specific binding properties, larger surface area compared to small molecules, and their ready and modular synthetic accessibility. In this protocol, we describe an on-resin, cleavage-inducing cyclization methodology for the synthesis of cyclic thiodepsipeptides and cyclic homodetic peptides using the 3-amino-4-(methylamino)benzoic acid (MeDbz) linker. We further describe three post-cyclization one-pot procedures, which include desulfurization, disulfide bond formation, and S-alkylation of cysteine residues.
Collapse
Affiliation(s)
- Bengt H Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gopi C, Krupamai G, Sri CS, Dhanaraju MD. An overview of recent progress in modern synthetic approach—combinatorial synthesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In recent times, a powerful tool of combinatorial synthesis has been used for the preparation of large chemical entities through a small set up of reactions between different building blocks using solid-phase and solution-phase techniques. This method reduced the time and cost of the drug discovery process substantially.
Main text
Thousands of compounds are synthesised in a few reactions through combinatorial synthesis instead of getting a few compounds in the traditional method. This method also helps to identify chemical lead of the compounds and optimise them through the biological screening using a high-throughput method. There is no review concerning the recent research finding of combinatorial synthesis. Hence, an attempt had been made on the latest research findings (2002–2020) of newly synthesised compounds using combinatorial synthesis and their biological activities.
Conclusion
To the best of our knowledge, the current review has completely analysed the importance of combinatorial synthesis and furnished an overview of solid-phase and solution-phase techniques as well as helped mankind by improving higher productivity at low cost, lead identification and optimization and preventing environmental pollution.
Graphical abstract
Collapse
|
4
|
Arbour CA, Mendoza LG, Stockdill JL. Recent advances in the synthesis of C-terminally modified peptides. Org Biomol Chem 2020; 18:7253-7272. [PMID: 32914156 PMCID: PMC9508648 DOI: 10.1039/d0ob01417f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
C-Terminally modified peptides are important for the development and delivery of peptide-based pharmaceuticals because they impact peptide activity, stability, hydrophobicity, and membrane permeability. Additionally, the vulnerability of C-terminal esters to cleavage by endogenous esterases makes them excellent pro-drugs. Methods for post-SPPS C-terminal functionalization potentially enable access to libraries of modified peptides, facilitating tailoring of their solubility, potency, toxicity, and uptake pathway. Apparently minor structural changes can significantly impact the binding, folding, and pharmacokinetics of the peptide. This review summarizes developments in chemical methods for C-terminal modification of peptides published since the last review on this topic in 2003.
Collapse
Affiliation(s)
- Christine A Arbour
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | - Lawrence G Mendoza
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | | |
Collapse
|
5
|
Acosta GA, Murray L, Royo M, de la Torre BG, Albericio F. Solid-Phase Synthesis of Head to Side-Chain Tyr-Cyclodepsipeptides Through a Cyclative Cleavage From Fmoc-MeDbz/MeNbz-resins. Front Chem 2020; 8:298. [PMID: 32391324 PMCID: PMC7189019 DOI: 10.3389/fchem.2020.00298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclic depsipeptides constitute a fascinating class of natural products. Most of them are characterized by an ester formed between the β-hydroxy function of Ser/Thr -and related amino acids- and the carboxylic group of the C-terminal amino acid. Less frequent are those where the thiol of Cys is involved rendering a thioester (cyclo thiodepsipeptides) and even less common are the cyclo depsipeptides with a phenyl ester coming from the side-chain of Tyr. Herein, the preparation of the later through a cyclative cleavage using the Fmoc-MeDbz/MeNbz-resin is described. This resin has previously reported for the synthesis of cyclo thiodepsipeptides and homodetic peptides. The use of that resin for the preparation of all these peptides is also summarized.
Collapse
Affiliation(s)
- Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain
| | - Laura Murray
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Miriam Royo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona (UB), Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Barcelona, Spain.,Associated Unit, Spanish National Research Council-University of Barcelona (CSIC-UB), Barcelona, Spain.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Recent Advances in the Catalytic Synthesis of Imidazolidin-2-ones and Benzimidazolidin-2-ones. Catalysts 2019. [DOI: 10.3390/catal9010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
2-Imidazolidinone and its analogues are omnipresent structural motifs of pharmaceuticals, natural products, chiral auxiliaries, and intermediates in organic syntheses. Over the years, continuous efforts have been addressed to the development of sustainable and more efficient protocols for the synthesis of these heterocycles. This review gives a summary of the catalytic strategies to access imidazolidin-2-ones and benzimidazolidin-2-ones that have appeared in the literature from 2010 to 2018. Particularly important contributions beyond the timespan will be mentioned. The review is organized in four main chapters that identify the most common approaches to imidazolidin-2-one derivatives: (1) the direct incorporation of the carbonyl group into 1,2-diamines, (2) the diamination of olefins, (3) the intramolecular hydroamination of linear urea derivatives and (4) aziridine ring expansion. Methods not included in this classification will be addressed in the miscellaneous section.
Collapse
|
7
|
Arbour CA, Belavek KJ, Tariq R, Mukherjee S, Tom JK, Isidro-Llobet A, Kopach ME, Stockdill JL. Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation. J Org Chem 2018; 84:1035-1041. [DOI: 10.1021/acs.joc.8b02418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christine A. Arbour
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kayla J. Belavek
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rooha Tariq
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Subha Mukherjee
- Bristol-Myers Squibb, Chemical and Synthetic Development, New Brunswick, New Jersey 08903, United States
| | - Janine K. Tom
- Amgen, Inc., Pivotal Drug Substance Process Development, Thousand Oaks, California 91320, United States
| | | | | | - Jennifer L. Stockdill
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
9
|
Arbour CA, Stockdill JL. A mild capping method for SPPS on the N-methyl diaminobenzoyl linker: Synthesis of an N-acyl urea appended C. elegans neuropeptide. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|
11
|
Gless BH, Olsen CA. Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. J Org Chem 2018; 83:10525-10534. [DOI: 10.1021/acs.joc.8b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bengt H. Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|