1
|
Lulic K, Wang J, Li X, Markandeya N, Huc I, Maurizot V, Duhamel J. Probing the Closed Association of Oligoquinoline Foldamers by Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2024; 128:10297-10308. [PMID: 39359059 DOI: 10.1021/acs.jpcb.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The metal-mediated dimerization of oligoquinoline foldamers terminated at one end with an oligo(phenylenevinylene) and at the other with a carboxylic acid (OPV-QnA, where n = 4, 8, 17, and 33), and the complexation of OPV-Q8A and Q16A was promoted in chloroform by the addition of a concentrated 16 M aqueous sodium hydroxide solution. UV-vis absorption and time-resolved fluorescence anisotropy (TRFA) experiments were conducted to determine, respectively, the concentration and the average rotational time ⟨ϕ⟩ of the mixture of unassociated and associated foldamers across a range of foldamer concentrations spanning 5 orders of magnitude. Plots of ⟨ϕ⟩ as a function of acid group concentration revealed that ⟨ϕ⟩ increased with increasing foldamer concentration only when the foldamer solution in chloroform was vigorously mixed with the 16 M sodium hydroxide aqueous solution. Furthermore, all plots showed that ⟨ϕ⟩ reached a plateau at high foldamer concentration. The increase in ⟨ϕ⟩ reflected the association of foldamers into larger objects through metal ion coordination with the carboxylate anions generated by deprotonation of the carboxylic acid of OPV-QnA with NaOH, while the plateau obtained at high foldamer concentration indicated that these interactions led to the dimerization of the foldamers via a closed association mechanism. Analysis of the ⟨ϕ⟩ trends yielded the equilibrium constants (K) describing the foldamer dimerization, whose value equaled 1.0 (±0.2) × 106 M-1 for the three longer OPV-QnA foldamers, but was about 10 times smaller for the shortest one (n = 4). Association of OPV-Q8A and Q16A yielded a complex with a ⟨ϕ⟩ matching that of OPV-Q24A, and K for this complexation was similar to that for dimerization. These experiments illustrate the robust nature of TRFA as an experimental method to probe the size of rigid, self-assembled foldamers in solution.
Collapse
Affiliation(s)
- Kristijan Lulic
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jingqi Wang
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xuesong Li
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Nagula Markandeya
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Ivan Huc
- Department Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, D-81377 Munich, Germany
| | - Victor Maurizot
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Jain A, De S, Haloi P, Barman P. The solvent-regulated excited state reaction mechanism of 2-(2'-hydroxyphenyl)benzothiazole aggregates. Photochem Photobiol Sci 2024; 23:65-78. [PMID: 38006523 DOI: 10.1007/s43630-023-00499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
The excited state relaxation dynamics of 2-(2'-hydroxyphenyl)benzothiazole (HBT) in the gas phase and the solvents have been explored experimentally and theoretically. However, the fundamental mechanism of its emission in aggregates is still unexplored. In this article, we have presented a detail investigation of solvent-regulated excited state (ES) reactions for HBT aggregates with the aid of several experimental and theoretical research. The careful investigation of solvatochromic and electrochemical behavior elucidates that the emission around 460 nm of HBT in DMSO and DMSO-water fraction correspond to the excited state internal charge transfer (ESICT). The quantum chemical analysis further supports this observation. The concentration-dependent 1H NMR and emission studies of HBT in DMSO revealed the formation of aggregates at higher concentrations that facilitate the charge transfer. The emission pattern of HBT in the AcN-water fraction demonstrates that the sequential internal charge transfer-proton transfer (ESICT-ESIPT) occurs in HBT aggregates. The pH studies show that HBT aggregates are potential ratiometric sensors for near-physiological pH ranges. Moreover, a ground-state zwitterionic conformation of HBT is observed in the basic medium formed by ground-state internal proton transfer (GSIPT). Overall, this study provides a better understanding of solvent-regulated ES reaction mechanism in the case of HBT aggregates and other substituted HBT compound aggregates published previously.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pankaj Haloi
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
3
|
Hogan DT, Sutherland TC. Multiple aggregates from multiple polymorphs: structural and mechanistic insight into organic dye aggregates. NANOSCALE 2022; 14:10327-10334. [PMID: 35822504 DOI: 10.1039/d2nr03211b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This case study provides evidence for the appearance of multiple aggregation forms of a single organic dye, arising from its packing polymorphs in the solid state. Each aggregate can be spectroscopically matched to one polymorph, acquiring nanoscopic structural information even in the absence of conventional H- or J-type aggregation spectral features. The conversion from one polymorphic aggregate to another supports the action of Ostwald's rule of stages in organic aggregates suspended in solution. Mechanistically, dye molecules from one aggregate dissociate then renucleate the more stable aggregate form, the first demonstration for an aggregation-induced emission-active organic dye.
Collapse
Affiliation(s)
- David T Hogan
- Department of Chemistry, University of Calgary, 2500 University Dr NW, T2N 1N4, Calgary, Alberta, Canada.
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Dr NW, T2N 1N4, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Aromatic stacking and the self-assembly of perylene monoimide diester homodimers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Kashapov R, Razuvayeva Y, Ziganshina A, Sapunova A, Lyubina A, Amerhanova S, Kulik N, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Effect of preorganization and amphiphilicity of calix[4]arene platform on functional properties of viologen derivatives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters. Sci Rep 2021; 11:16097. [PMID: 34373513 PMCID: PMC8352899 DOI: 10.1038/s41598-021-95551-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree–Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.
Collapse
|
7
|
Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O’Donoghue AJ, Jokerst JV. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens 2021; 6:2356-2365. [PMID: 34038103 DOI: 10.1021/acssensors.1c00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activatable contrast agents are of ongoing research interest because they offer low background and high specificity to the imaging target. Engineered sensitivity to protease activity is particularly desirable because proteases are critical biomarkers in cancer, infectious disease, inflammatory disorders, and so forth. Herein, we developed and characterized a set of peptide-linked cyanine conjugates for dual-modal detection of protease activity via photoacoustic (PA) and fluorescence imaging. The peptide-dye conjugates were designed to undergo contact quenching via intramolecular dimerization and contained n dyes (n = 2, 3, or 4) with n - 1 cleavable peptide substrates. The absorption peaks of the conjugates were blue-shifted 50 nm relative to the free dye and had quenched fluorescence. This effect was sensitive to solvent polarity and could be reversed by solvent switching from water to dimethyl sulfoxide. Employing trypsin as a model protease, we observed a 2.5-fold recovery of the peak absorbance, 330-4600-fold fluorescent enhancement, and picomolar detection limits following proteolysis. The dimer probe was further characterized for PA activation. Proteolysis released single dye-peptide fragments that produced a 5-fold PA enhancement through the increased absorption at 680 nm with nanomolar sensitivity to trypsin. The peptide substrate could also be tuned for protease selectivity; as a proof-of-concept, we detected the main protease (Mpro) associated with the viral replication in SARS-CoV-2 infection. Last, the activated probe was imaged subcutaneously in mice and signal was linearly correlated to the cleaved probe. Overall, these results demonstrate a tunable scaffold for the PA molecular imaging of protease activity with potential value in areas such as disease monitoring, tumor imaging, intraoperative imaging, in vitro diagnostics, and point-of-care sensing.
Collapse
Affiliation(s)
- Colman Moore
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M. Borum
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Kshtriya V, Koshti B, Gangrade A, Haque A, Singh R, Joshi KB, Bhatia D, Gour N. Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj03269k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report self assembly of a benzothiazolone conjugate (CBT) into fluorescent panchromatic fibres and their application as a panchromatic dye in bioimaging.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ankit Gangrade
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ashadul Haque
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|
9
|
Boccia AC, Lukeš V, Eckstein-Andicsová A, Kozma E. Solvent- and concentration-induced self-assembly of an amphiphilic perylene dye. NEW J CHEM 2020. [DOI: 10.1039/c9nj05674b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PDA-CA self-assembly behavior depends on temperature, concentration, and solvent.
Collapse
Affiliation(s)
| | - Vladimir Lukeš
- Department of Chemical Physics
- Slovak University of Technology in Bratislava
- Bratislava
- Slovakia
| | | | - Erika Kozma
- Istituto di Scienze e Tecnologie Chimiche-SCITEC “G. Natta”
- CNR-National Research Council
- Milano
- Italy
| |
Collapse
|