1
|
Chatterjee R, Bhukta S, Angajala KK, Dandela R. Copper catalysed oxidative cascade deamination/cyclization of vinyl azide and benzylamine for the synthesis of 2,4,6-triarylpyridines. Org Biomol Chem 2023. [PMID: 37334911 DOI: 10.1039/d3ob00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A highly efficient one-pot method for the synthesis of 2,4,6-triaryl pyridines has been developed via cascade deamination and annulation. Copper triflate and molecular iodine easily promoted the oxidative cyclization reaction of vinyl azide and benzylamine to access a wide variety of substituted pyridine substrates under an oxygen atmosphere. The presence of benzyl amine enables the cyclization process by providing the aryl functionality and the nitrogen source. Moreover, a broad range of substrates with good functional group tolerance, avoidance of external oxidants, excellent product yields, operational simplicity and mild conditions are the notable advantages of the present protocol.
Collapse
Affiliation(s)
- Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Kishore Kumar Angajala
- Department of Humanities and Sciences, Vardhaman College of Engineering, Shamshabad, Hyderabad-501218, Telangana, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
2
|
Wang B, Zhang GM, Zhang H, Wang JY. B(C 6F 5) 3-catalyzed oxidation of α-diazoesters using DMF and molecular oxygen as oxygen sources. RSC Adv 2022; 12:33584-33588. [PMID: 36505720 PMCID: PMC9682326 DOI: 10.1039/d2ra05739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
A metal-free catalytic oxidation of α-diazoesters via a green environmental-friendly route was developed. The α-diazoesters were converted to α-ketoesters using DMF and molecular oxygen as oxygen sources and B(C6F5)3 as the catalyst, without any additives. This protocol has a broad adaptability of substrates and good compatibility with a range of functional groups, and it offers new insight into reactions catalyzed by B(C6F5)3.
Collapse
Affiliation(s)
- Bei Wang
- Department of Chemistry, Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua UniversityChengdu 610041P. R. China,Chengdu Institute of Organic Chemistry, Chinese Academy of SciencesChengdu 610041P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Guo-Min Zhang
- Department of Chemistry, Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua UniversityChengdu 610041P. R. China,Chengdu Institute of Organic Chemistry, Chinese Academy of SciencesChengdu 610041P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Hua Zhang
- Department of Chemistry, Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua UniversityChengdu 610041P. R. China,Chengdu Institute of Organic Chemistry, Chinese Academy of SciencesChengdu 610041P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua UniversityChengdu 610041P. R. China,Chengdu Institute of Organic Chemistry, Chinese Academy of SciencesChengdu 610041P. R. China
| |
Collapse
|
3
|
Shabalin DA. Recent advances and future challenges in the synthesis of 2,4,6-triarylpyridines. Org Biomol Chem 2021; 19:8184-8204. [PMID: 34499071 DOI: 10.1039/d1ob01310f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
2,4,6-Triarylpyridines are key building blocks to access functional molecules that are used in the design of advanced materials, metal-organic frameworks, supramolecules, reactive chemical intermediates and drugs. A number of synthetic protocols to construct this heterocyclic scaffold have been developed to date, the most recent of which (2015-present) are included and discussed in the present review. An emphasis has been placed on the utility of each synthetic approach in view of the scope of aryl/hetaryl substituents, limitations and an outlook of each method to be used in applied sciences.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| |
Collapse
|
4
|
Zhan ZZ, He JP, Jiang PB, Zhang MM, Wang HS, Luo N, Huang GS. Cu(II)‐Catalyzed Synthesis of 2,3,6‐Trisubstituted Pyridines from Saturated Ketone and Alkynones/1,3‐Dicarbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Jian P. He
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Peng B. Jiang
- Zhe Jiang Shaoxing Zhejiang Pharmaceutical Co., Ltd. No. 58 Changhe Road, Binhai New City Shaoxing City Zhejiang Province China
| | - Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
5
|
Zhang GM, Zhang H, Wang B, Wang JY. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water. RSC Adv 2021; 11:17025-17031. [PMID: 35479693 PMCID: PMC9031380 DOI: 10.1039/d1ra01922h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
A metal-free catalytic allylation with atom economy and green environment friendly was developed. Allylic alcohols could be directly dehydrated in water by B(C6F5)3, without using any base additives. The reaction can afford the corresponding monoallylated product in moderate to high yield and has been performed on a gram-scale, and a quaternary carbon center can be constructed for the active methine compounds of 1,3-diketones or β-ketone esters in this process. The product can be further converted, such as the synthesis of tetra-substituted pyrazole compounds, or 1,4-dienes and functionalized dihydropyrans.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
6
|
Asressu K, Chan CK, Wang CC. One-Pot Synthesis of 1,5-Diketones under a Transition-Metal-Free Condition: Application in the Synthesis of 2,4,6-Triaryl Pyridine Derivatives. ACS OMEGA 2021; 6:7296-7311. [PMID: 33778244 PMCID: PMC7992091 DOI: 10.1021/acsomega.0c05328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
We developed a facile and green one-pot synthetic method for substituted 1,3,5-triaryl-1,5-diketones by Claisen-Schmidt condensation following Michael addition reaction of aryl ketones and aryl aldehydes under a transition-metal-free condition. This convenient one-pot synthetic strategy has several advantages, including being transition-metal-free, having no extra additives or reagents, having a broad substrate scope, having a high isolated yield, having a minimum amount of base employment, having a shorter reaction time, use of cheap starting materials, cost-effectiveness, and being environment friendly. Some of the chemical structures of 1,5-diketones were confirmed by X-ray single-crystal diffraction analysis. The application of 1,5-diketones was demonstrated in the preparation of 2,4,6-triaryl pyridine derivatives under a catalyst-free system using ammonium acetate as a nitrogen source.
Collapse
Affiliation(s)
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia
Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
7
|
Kumar G, Roy S, Chatterjee I. Tris(pentafluorophenyl)borane catalyzed C-C and C-heteroatom bond formation. Org Biomol Chem 2021; 19:1230-1267. [PMID: 33481983 DOI: 10.1039/d0ob02478c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
8
|
Tang S, Rauch M, Montag M, Diskin-Posner Y, Ben-David Y, Milstein D. Catalytic Oxidative Deamination by Water with H 2 Liberation. J Am Chem Soc 2020; 142:20875-20882. [PMID: 33237749 PMCID: PMC7729941 DOI: 10.1021/jacs.0c10826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/05/2023]
Abstract
Selective oxidative deamination has long been considered to be an important but challenging transformation, although it is a common critical process in the metabolism of bioactive amino compounds. Most of the synthetic methods developed so far rely on the use of stoichiometric amounts of strong and toxic oxidants. Here we present a green and efficient method for oxidative deamination, using water as the oxidant, catalyzed by a ruthenium pincer complex. This unprecedented reaction protocol liberates hydrogen gas and avoids the use of sacrificial oxidants. A wide variety of primary amines are selectively transformed to carboxylates or ketones in good to high yields. It is noteworthy that mechanistic experiments and DFT calculations indicate that in addition to serving as the oxidant, water also plays an important role in assisting the hydrogen liberation steps involved in amine dehydrogenation.
Collapse
Affiliation(s)
- Shan Tang
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Rauch
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Montag
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehoshoa Ben-David
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Synthesis and characterization of a novel organo-soluble polyimide containing hydroxyl and bis-tert-butyl substituted triphenylpyridine units. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Fisher L. Retraction: An efficient one pot three-component synthesis of 2,4,6-triarylpyridines using triflimide as a metal-free catalyst under solvent-free conditions. RSC Adv 2020; 10:24491. [PMID: 35532394 PMCID: PMC9055156 DOI: 10.1039/d0ra90073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Retraction of ‘An efficient one pot three-component synthesis of 2,4,6-triarylpyridines using triflimide as a metal-free catalyst under solvent-free conditions’ by Hongshe Wang et al., RSC Adv., 2019, 9, 5158–5163, DOI: 10.1039/C9RA00653B.
Collapse
|
11
|
Ling F, Chen J, Xie Z, Hou H, Pan Z, Feng C, Shen H, Zhong W. Synthesis of substituted quinolines via B(C
6
F
5
)
3
‐catalyzed aniline‐aldehyde‐pyruvate oxidative annulation. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Jiachen Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Zhen Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Huacui Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Zhentao Pan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Cong Feng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Haiwei Shen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
12
|
Le TNM, Doan SH, Pham PH, Trinh KH, Huynh TV, Tran TTT, Le MV, Nguyen TT, Phan NTS. Synthesis of triphenylpyridines via an oxidative cyclization reaction using Sr-doped LaCoO 3 perovskite as a recyclable heterogeneous catalyst. RSC Adv 2019; 9:23876-23887. [PMID: 35530585 PMCID: PMC9069450 DOI: 10.1039/c9ra04096j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/13/2019] [Indexed: 01/25/2023] Open
Abstract
An La0.6Sr0.4CoO3 strontium-doped lanthanum cobaltite perovskite was prepared via a gelation and calcination approach and used as a heterogeneous catalyst for the synthesis of triphenylpyridines via the cyclization reaction between ketoximes and phenylacetic acids. The transformation proceeded via the oxidative functionalization of the sp3 C-H bond in phenylacetic acid. The La0.6Sr0.4CoO3 catalyst demonstrated a superior performance to that of the pristine LaCoCO3 as well as a series of homogeneous and heterogeneous catalysts. Furthermore, the La0.6Sr0.4CoO3 catalyst was facilely recovered and reused without considerable decline in its catalytic efficiency. To the best of our knowledge, the combination of ketoximes with easily available phenylacetic acids is novel.
Collapse
Affiliation(s)
- Thu N M Le
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Son H Doan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Phuc H Pham
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Khang H Trinh
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tien V Huynh
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tien T T Tran
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Minh-Vien Le
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tung T Nguyen
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Nam T S Phan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| |
Collapse
|