1
|
Figazzolo C, Ma Y, Tucker JHR, Hollenstein M. Ferrocene as a potential electrochemical reporting surrogate of abasic sites in DNA. Org Biomol Chem 2022; 20:8125-8135. [DOI: 10.1039/d2ob01540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have evaluated the possibility of replacing abasic sites with ferrocene for enzymatic synthesis of canonical and modified DNA.
Collapse
Affiliation(s)
- Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Learning Planet Institute, 8, rue Charles V, 75004 Paris, France
| | - Yifeng Ma
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
2
|
Levi-Acobas F, McKenzie LK, Hollenstein M. Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00427e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymerase-mediated synthesis of RNA-DNA metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Luke K. McKenzie
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
3
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
4
|
Röthlisberger P, Levi-Acobas F, Leumann CJ, Hollenstein M. Enzymatic synthesis of biphenyl-DNA oligonucleotides. Bioorg Med Chem 2020; 28:115487. [PMID: 32284226 DOI: 10.1016/j.bmc.2020.115487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022]
Abstract
The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France.
| |
Collapse
|
5
|
Levi-Acobas F, Katolik A, Röthlisberger P, Cokelaer T, Sarac I, Damha MJ, Leumann CJ, Hollenstein M. Compatibility of 5-ethynyl-2'F-ANA UTP with in vitro selection for the generation of base-modified, nuclease resistant aptamers. Org Biomol Chem 2019; 17:8083-8087. [PMID: 31460550 DOI: 10.1039/c9ob01515a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France and Institut Pasteur, Biomics Platform, C2RT, Paris, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| |
Collapse
|
6
|
Vichier-Guerre S, Dugué L, Pochet S. 2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates. Org Biomol Chem 2019; 17:290-301. [PMID: 30543241 DOI: 10.1039/c8ob02464b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
7
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|