1
|
Su R, Huang Z. A brand-new type of excited-state proton transfer (ESIPT) molecule based on sulfoxide/sulfenic acid tautomerism. Phys Chem Chem Phys 2023; 25:27566-27573. [PMID: 37807837 DOI: 10.1039/d3cp02624h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The excited-state proton transfer (ESIPT) behavior of organic fluorophores has attracted much attention due to their unique photophysical properties. So far, ESIPT studies have mainly focused on the transfer of hydrogen atoms between N-N, N-O, or O-O. In this work, a brand-new type of ESIPT molecule based on sulfoxide/sulfenic acid tautomerism has been thoroughly investigated. The sulfoxide/sulfenic acid tautomerization process requires one step and two steps in the ground and first excited singlet states, respectively. A range of density functional theory and time-dependent density functional theory methods have been employed to investigate these structures, and the changes in aromaticity may be responsible for obtaining the ESIPT process. This work presents a novel ESIPT process, showcasing molecules that exhibit distinctive properties compared to conventional ESIPT compounds. These findings are expected to expand the horizons of experimental research in ESIPT.
Collapse
Affiliation(s)
- Rongchuan Su
- Department of Pharmacology, North Sichuan Medical College, Nanchong, 637100, China.
| | - Zhenmei Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
3
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
4
|
Zhang H, Li Z, Liu J, Wang Y. Effect of intermolecular hydrogen bonds on the proton transfer and fluorescence characteristics of 1′-hydroxy-2′-acetonaphthone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bao G, Zhou B, Han Y. A Highly Selective and Sensitive Fluorescent Light-up Probe for Rapid Detection of Mercury Ions in Aqueous Solution. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Sheng X, Kong L, Wang J, Ding L, Liu Z, Wang S. A phthalimide-based ESIPT fluorescent probe for sensitive detection of Cu2+ in complete aqueous solution. ANAL SCI 2022; 38:689-694. [DOI: 10.1007/s44211-022-00084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
|
7
|
Lei S, Meng X, Wang L, Zhou J, Qin D, Duan H. A Naphthalimide-Based Fluorescent Probe for the Detection and Imaging of Mercury Ions in Living Cells. ChemistryOpen 2021; 10:1116-1122. [PMID: 34726842 PMCID: PMC8562314 DOI: 10.1002/open.202100204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
The selective and efficient monitoring of mercury (Hg2+ ) contamination found in the environment and ecosystem has been carried out. Thus, a new 1,8-naphthalimide-based fluorescent probe NADP for the detection of Hg2+ based on a fluorescence enhancement strategy has been designed and synthesized. The NADP probe can detect Hg2+ with high selectivity and sensitivity and a low detection limit of 13 nm. The detection mechanism was based on a Hg2+ -triggered deprotection reaction, resulting in a dramatic change in fluorescence from colorless to green at physiological pH. Most importantly, biological investigation has shown that the NADP probe can be successfully applied to the monitoring of Hg2+ in living cells and zebrafish with low cytotoxicity.
Collapse
Affiliation(s)
- Shaoyu Lei
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Xia Meng
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Lizhen Wang
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences)Jinan250103Shandong ProvinceChina
| | - Jianhua Zhou
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Dawei Qin
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Hongdong Duan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| |
Collapse
|
8
|
Gong J, Liu C, Jiao X, He S, Zhao L, Zeng X. A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg 2+ in mitochondria. Org Biomol Chem 2021; 18:5238-5244. [PMID: 32609132 DOI: 10.1039/d0ob00507j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mercury ion (Hg2+), one of the most notorious heavy metal ions, not only causes environmental pollution, but also endangers human health. There is evidence that Hg2+ tends to accumulate in the mitochondria and to induce apoptosis. However, mitochondria-targeted near-infrared (NIR) fluorescent probes with large Stokes shifts are still scarcely described for the specific detection of Hg2+. In this work, a novel near-infrared fluorescent probe JRQNS with a large Stokes shift (78 nm) was reported, and applied for sensitive and specific detection of Hg2+ in mitochondria by incorporating an additional amine group with fused rings to rhodamine dyes to enhance the electron donating ability of amine groups. As expected, the probe exhibited high selectivity and sensitivity to Hg2+ with a detection limit as low as 1.5 nM and fast response times (3 min), revealing that JRQNS could be used as a practical probe for quantitative detection of Hg2+ in real-time. Importantly, JRQNS can be used as an efficient organelle-targeting probe for imaging Hg2+ in the mitochondria of living cells, and thus detect Hg2+ in real-time there. The application of the probe for its selective localization in mitochondria along with the nanomolar level of limit of detection to Hg2+ ions provided a potential tool for studying the cytotoxic mechanisms of Hg2+.
Collapse
Affiliation(s)
- Jin Gong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xianshun Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China and Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
9
|
Wu X, Li Y, Yang S, Tian H, Sun B. A dual-site fluorescent probe for sensitive detection of mercury(II). Microchem J 2020. [DOI: 10.1016/j.microc.2020.105024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chen S, Zhang S, A R, Han Y. A new rhodamine probe with large stokes shift for Hg2+ detection and its application in real sample analysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Zhu J, Lu L, Wang M, Sun T, Huang Y, Wang C, Bao W, Wang M, Zou F, Tang Y. Fluorescence “On-Off” chemical sensor for ultrasensitive detection of Al3+ in live cell. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Wu X, Duan N, Yang S, Tian H, Sun B. Synthesis and Application of a Naphthol‐Based Fluorescent Probe for Mercury(II) Detection. ChemistrySelect 2020. [DOI: 10.1002/slct.202000076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
13
|
Yang B, Huang J, Bao C, Zhang S, Han Y. A highly sensitive colorimetric and ratiometric fluorescent probe based on 3-hydroxyphthalimide for detection of Hg2+ in aqueous solution and its application in real sample analysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wang J, Lu L, Wang C, Wang M, Ju J, Zhu J, Sun T. An AIE and PET fluorescent probe for effective Zn(ii) detection and imaging in living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03667f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A sensitive fluorescent probe L for Zn2+ with aggregation-induced emission (AIE) properties has been synthesized.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Linxia Lu
- School of Textiles and Clothing
- Nantong University
- Nantong 226019
- P. R. China
| | - Chun Wang
- School of Textiles and Clothing
- Nantong University
- Nantong 226019
- P. R. China
| | - Minmin Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials
| | - Jianfeng Ju
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|