1
|
Chen F, Dong S, Zhao C, Hu W, Wang G, Hu Y, Deng S. A Novel One‐Step Synthesis of Silicon‐Containing Arylacetylene Resin Catalyzed by Et
2
Zn with Excellent Processability and Thermal Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202200133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fan Chen
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Sensen Dong
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chuanqing Zhao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei Hu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Guihui Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yanhong Hu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shifeng Deng
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
2
|
Wang YF, He YH, Su Y, Ji Y, Li R. Asymmetric Hydrosilylation of β-Silyl Styrenes Catalyzed by a Chiral Palladium Complex. J Org Chem 2022; 87:2831-2844. [PMID: 35080877 DOI: 10.1021/acs.joc.1c02734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium complex coordinated with a chiral SIPHOS ligand was evaluated as an efficient catalyst for asymmetric hydrosilylation of β-silyl styrenes with trichlorosilane and 23 1,2-bis(silyl) chiral compounds were produced. Good to excellent enantioselectivities were observed with 1-aryl-2-silyl ethanols, where the trichlorosilyl groups of the hydrosilylation products were selectively converted into a hydroxyl group in the presence of pre-installed trialkylsilyl groups. Asymmetric hydrosilylation of β-silyl styrenes followed by methylation of the trichlorosilyl group gave stable 1,2-bis(silyl) chiral compounds 4 with excellent yields. DFT calculations of hydridopalladium B coordinated with a SIPHOS ligand, an intermediate of the hydrosilylation reaction, established the optical structures to be energy minima, and the structural information could well illustrate the enantioselectivity for the hydrosilylation reaction.
Collapse
Affiliation(s)
- Yi-Fan Wang
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu-Han He
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Yan Su
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Ji
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Rui Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Liu R, Liu X, Cheng T, Chen Y. Organocalcium Complex‐Catalyzed Dehydrogenative Coupling of Hydrosilanes with Terminal Alkynes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruixin Liu
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University 100 Guilin Road Shanghai 200234 P.R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaojuan Liu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Tanyu Cheng
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University 100 Guilin Road Shanghai 200234 P.R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
4
|
Kawatsu T, Kataoka S, Fukaya N, Choi JC, Sato K, Matsumoto K. Fluoride Ion-Initiated Decarboxylation of Silyl Alkynoates to Alkynylsilanes. ACS OMEGA 2021; 6:12853-12857. [PMID: 34056436 PMCID: PMC8154224 DOI: 10.1021/acsomega.1c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This communication describes the development of a metal-free catalytic decarboxylation of silyl alkynoates to alkynylsilanes. Treatment of a silyl alkynoate with a catalytic amount of tetrabutylammonium difluorotriphenylsilicate (TBAT) in N,N-dimethylformamide at 150 °C resulted in decarboxylation to give the corresponding alkynylsilane in good to excellent yield (75 → 95%). The TBAT system was applicable to the decarboxylation of sterically demanding silyl alkynoates such as tert-butyldiphenylsilyl 3-phenylpropiolate. Mechanistic studies revealed that the tetrabutylammonium alkynoate derived from TBAT and the silyl alkynoate act as a catalyst for the decarboxylation.
Collapse
Affiliation(s)
- Takahiro Kawatsu
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Sho Kataoka
- Research
Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Norihisa Fukaya
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Jun-Chul Choi
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiko Sato
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiro Matsumoto
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central
5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|
5
|
Huang P, Liu Z, Shao Y, Deng S, Liu B. Mechanistic investigation of zinc-promoted silylation of phenylacetylene and chlorosilane: a combined experimental and computational study. Phys Chem Chem Phys 2020; 22:22935-22942. [PMID: 33025988 DOI: 10.1039/d0cp04127k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The zinc-promoted silylation method is of great importance to synthesize high-performance silicon-containing arylacetylene (PSA) resins in the industry. However, it is difficult to eliminate the accompanied by-product of terminal alkenes due to the lack of mechanistic understanding of the silylation. The initiation of zinc-promoted silylation is facilitated by the interaction between zinc and phenylacetylene. Our DFT calculations indicated that the intermolecular hydrogen transfer of phenylacetylene follows an ionic pathway, which generates a phenylacetylene anion and the corresponding alkene moieties on the zinc surface. The styrene by-product is observed in this stage, with its alkene moieties desorbing as radicals into the solvent under the high reaction temperature. Three possible intermediates of surface phenylacetylene anions were proposed including PhC[triple bond, length as m-dash]C-Zn, PhC[triple bond, length as m-dash]CZnCl, and (PhC[triple bond, length as m-dash]C)2Zn. These carbanion-zinc intermediates undergo an SN2 reaction with Me3SiCl to afford the alkynylsilane on the zinc surface, which is calculated to be the rate-determining step for the zinc-promoted silylation reaction.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
6
|
Kawatsu T, Aoyagi K, Nakajima Y, Choi JC, Sato K, Matsumoto K. Catalytic Decarboxylation of Silyl Alkynoates to Alkynylsilanes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiro Kawatsu
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Keiya Aoyagi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Jun-Chul Choi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiro Matsumoto
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|