1
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Recent Advances in the Use of Dimethyl Sulfoxide as a Synthon in Organic Chemistry. Top Curr Chem (Cham) 2022; 380:55. [DOI: 10.1007/s41061-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
|
3
|
P R, S V, John J. Inverse Electron Demand Diels Alder Reaction of Aza- o-Quinone Methides and Enaminones: Accessing 3-Aroyl Quinolines and Indeno[1,2- b]quinolinones. J Org Chem 2022; 87:13708-13714. [PMID: 36177973 DOI: 10.1021/acs.joc.2c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have developed a Diels Alder cycloaddition route toward 3-aroyl quinolines from enaminones and in situ generated aza-o-quinone methides. The reaction was found to be general with a range of substituted enaminones and aza-o-quinone methides, and we could validate the applicability of the methodology in gram scale. We also demonstrated a one-pot strategy toward 3-acyl quinolines starting from the corresponding aliphatic ketones. Finally, we utilized the 3-aroyl quinolines for synthesizing indeno[1,2-b]quinolinones via a Pd-catalyzed dual C-H activation approach.
Collapse
Affiliation(s)
- Rahul P
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Shi X, Zhang Q, Wang A, Jiang T. Substrate‐Induced Synthesis of Coumarin‐Fused Quinolinones from Anilines, 4‐Hydroxycoumarins and DMSO under Air. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Shi
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Qingqing Zhang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Anan Wang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Tao‐Shan Jiang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| |
Collapse
|
5
|
Chen XY, Zhang X, Wan JP. Recent advances in transition metal-free annulation toward heterocycle diversity based on the C-N bond cleavage of enaminone platform. Org Biomol Chem 2022; 20:2356-2369. [DOI: 10.1039/d2ob00126h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enaminones and analogous stable enamines are well known as platform building blocks in organic synthesis for construction of heterocyclic compounds, especially N-heterocycles. To date, especially enaminones have been successfully...
Collapse
|
6
|
Ma JT, Wang LS, Chai Z, Chen XF, Tang BC, Chen XL, He C, Wu YD, Wu AX. Access to 2-arylquinazolines via catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide. Chem Commun (Camb) 2021; 57:5414-5417. [PMID: 33949486 DOI: 10.1039/d1cc00623a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinazoline skeletons are synthesized by amino acid catabolism/reconstruction combined with the insertion/cyclization of dimethyl sulfoxide for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism and is then reconstructed using aromatic amines and dimethyl sulfoxide (DMSO) as a one-carbon synthon. This protocol is of great significance for the further study of the conversion of amino acids.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhi Chai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xin-Feng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
7
|
Luo R, Guo L, Liu W, Wang S. Copper-catalyzed synthesis of phenolic compounds with DMSO as the methylene source. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1902536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Run Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lina Guo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| |
Collapse
|
8
|
Amaye IJ, Haywood RD, Mandzo EM, Wirick JJ, Jackson-Ayotunde PL. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Wang A, Liu X, Kong Y, Wang J, Jiang TS. Substrate-induced DMSO activation and subsequent reaction for rapid construction of substituted pyrimidines. Org Chem Front 2021. [DOI: 10.1039/d0qo01416h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free direct synthesis of pyrimidines from amidine hydrochlorides, ketones and DMSO through substrate-induced DMSO activation and involved reactions has been developed.
Collapse
Affiliation(s)
- Anan Wang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province
- School of Pharmacy
- Anhui Medical University
- Hefei 230032
- P.R. China
| | - Yi Kong
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Jing Wang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| | - Tao-Shan Jiang
- School of Life Sciences
- Anhui Agricultural University
- Hefei
- P.R. China
| |
Collapse
|
10
|
Mittersteiner M, Andrade VP, Bonacorso HG, Martins MAP, Zanatta N. The Wonderful World of β‐Enamino Diketones Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| |
Collapse
|
11
|
Wang Y, Hu B, Zhang Q, Zhao S, Zhao Y, Zhang B, Yu F. Selectfluor-triggered fluorination/cyclization of o-hydroxyarylenaminones: A facile access to 3-fluoro-chromones. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820923084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fast and efficient Selectfluor-triggered fluorination/cyclization reaction of o-hydroxyarylenaminones has been successfully developed. The reaction successfully provides an expedient method for the synthesis of 3-fluoro-chromones promoted by potassium carbonate, which shows readily available starting materials and is easy to operate. In addition, a plausible mechanism of this tandem cyclization reaction was proposed where 4 H-chromen-4-one, 2-(dimethylamino)-3,3-difluorochroman-4-one, and 3,3-difluoro-2-hydroxychroman-4-one were not found to be the reactive intermediates. Moreover, these novel compounds have been obtained in moderate to good yields, and their structures have been confirmed by 1H NMR, 13C NMR, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Yanqin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
12
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
13
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen‐Containing Polyaromatics by Aza‐Annulative π‐Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou P. Kawahara
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Wataru Matsuoka
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideto Ito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
14
|
Harry NA, Ujwaldev SM, Anilkumar G. Recent advances and prospects in the metal-free synthesis of quinolines. Org Biomol Chem 2020; 18:9775-9790. [DOI: 10.1039/d0ob02000a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-free synthesis of quinolines has recently gained attention, and this review focuses on the recent advances in the metal-free synthesis of quinolines.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
15
|
Wan J, Jing Y, Wei L. Corrigendum: Branched C=C and C−N Bond Cleavage on Enaminones toward the Synthesis of 3‐Acyl Quinolines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|