1
|
Patra D, Mondal MA, Saha A. Disulfide-mediated ruthenium-catalyzed direct C-H thiolation in benzoxazinone systems: selective synthesis of ortho-thiolated 2-arylbenzoxazinones. Org Biomol Chem 2025. [PMID: 39878190 DOI: 10.1039/d4ob02023e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
2-Arylbenzoxazinone undergoes direct ortho-C-H thiolation by using diaryl disulfide in the presence of a Ru(II)-phosphine catalytic system and an Ag additive. The protocol has been generalized with benzoxazinone substrates having different substituents and a series of disulfides. ortho-Selenylation has also been performed successfully using diphenyl diselenide under similar catalytic conditions. Based on control experiments and reported literature studies, a probable mechanistic pathway has been suggested.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Zhang Y, Guo Y, Zhao Y, Cao S. NaOAc-Assisted Aerobic Oxidation Protocol for the Synthesis of Pentacoordinate Chalcogenyl Spirophosphoranes with P-Se/P-S Bonds under Open Air. J Org Chem 2024; 89:3259-3270. [PMID: 38380616 DOI: 10.1021/acs.joc.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yanchun Guo
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yufen Zhao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuxia Cao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Doraghi F, Aledavoud SP, Ghanbarlou M, Larijani B, Mahdavi M. N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations. Beilstein J Org Chem 2023; 19:1471-1502. [PMID: 37799175 PMCID: PMC10548256 DOI: 10.3762/bjoc.19.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
In the field of organosulfur chemistry, sulfenylating agents are an important key in C-S bond formation strategies. Among various organosulfur precursors, N-sulfenylsuccinimide/phthalimide derivatives have shown highly electrophilic reactivity for the asymmetric synthesis of many organic compounds. Hence, in this review article, we focus on the application of these alternative sulfenylating reagents in organic transformations.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Pegah Aledavoud
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ash J, Kang JY. Catalyst-free thiophosphorylation of in situ formed ortho-quinone methides. Org Biomol Chem 2023; 21:2370-2374. [PMID: 36852656 DOI: 10.1039/d2ob02169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A metal-, chloride reagent and base-free thiophosphorylation reaction of in situ formed ortho-quinone methide (o-QM) to synthesize functionalized thiophosphates has been developed. The reaction is an atom-economical process, producing water as the sole byproduct. (EtO)2P(O)SH functions as both a Brønsted acid and nucleophilic thiolate to produce the o-QM intermediate and the thiophosphate product, respectively. The aza o-QMs were also successfully thiophosphorylated in the presence of catalytic TsOH to form sulfonamido thiophosphates.
Collapse
Affiliation(s)
- Jeffrey Ash
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| |
Collapse
|
5
|
Yang B, Zhang XY, Yue HQ, Li WZ, Li M, Lu L, Wu ZQ, Li J, Sun K, Yang S. A Promoter‐free Protocol for the Synthesis of Selenophosphates and Thiophosphates via a Spontaneous Process at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Kai Sun
- Anyang Normal University CHINA
| | | |
Collapse
|
6
|
Dutta S, Saha A, Ranu BC. Solvent free synthesis of organoselenides under green conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj04068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Solvent free synthesis of organoselenium compounds using conventional heating, microwave irradiation, ball milling, and photo-induction is discussed.
Collapse
Affiliation(s)
- Soumya Dutta
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Brindaban C. Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Zhang C, Zhou Y, Zhao Z, Xue W, Gu L. An electrocatalytic three-component reaction for the synthesis of phosphoroselenoates. Chem Commun (Camb) 2022; 58:13951-13954. [DOI: 10.1039/d2cc05570h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phosphoroselenoates are important organic molecules because they have found widespread applications in many fields.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650500, China
| | - Yaqin Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhiheng Zhao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lijun Gu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
9
|
Liu C, Wang L, Zhang X. Advances in the Synthesis of Phosphorothioate and Phosphinothioate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Mailahn DH, Iarocz LEB, Nobre PC, Perin G, Sinott A, Pesarico AP, Birmann PT, Savegnago L, Silva MS. A greener protocol for the synthesis of phosphorochalcogenoates: Antioxidant and free radical scavenging activities. Eur J Med Chem 2020; 213:113052. [PMID: 33272781 DOI: 10.1016/j.ejmech.2020.113052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
In this contribution, a metal- and base-free protocol has been developed for the synthesis of phosphorochalcogenoates (Se and Te) by using DMSO as solvent at 50 °C. A variety of phosphorochalcogenoates were prepared from diorganyl dichalcogenides and H-phosphonates, leading to the formation of a Chal-P(O) bond, in a rapid procedure with good to excellent yields. A full structural elucidation of products was accessed by 1D and 2D NMR, IR, CGMS, and HRMS analyses, and a stability evaluation of the phosphorochalcogenoates was performed for an effective operational description of this simple and feasible method. Typical 77Se{1H} (δSe = 866.0 ppm), 125Te{1H} (δTe = 422.0 ppm) and 31P{1H} (δP = -1.0, -13.0 and -15.0 ppm) NMR chemical shifts were imperative to confirm the byproducts, in which this stability study was also important to select some products for pharmacological screening. The phosphorochalcogenoates were screened in vitro and ex vivo tests for the antioxidant potential and free radical scavenging activity, as well as to investigation toxicity in mice through of the plasma levels of markers of renal and hepatic damage. The pharmacological screening of phosphorochalcogenoates indicated that compounds have antioxidant propriety in different assays and not changes plasma levels of markers of renal and hepatic damage, with excision of 3g compound that increased plasma creatinine levels and decreased plasma urea levels when compared to control group in the blood mice. Thus, these compounds can be promising synthetic antioxidants that provide protection against oxidative diseases.
Collapse
Affiliation(s)
- Daniela H Mailahn
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Lucas E B Iarocz
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Patrick C Nobre
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Airton Sinott
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Paloma T Birmann
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil.
| | - Márcio S Silva
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Jones DJ, O'Leary EM, O'Sullivan TP. Modern Synthetic Approaches to Phosphorus‐Sulfur Bond Formation in Organophosphorus Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|