1
|
Lee K, Kim YA, Jung C, Sim J, Rajasekar S, Kwak JH, Viji M, Jung JK. Microwave-Mediated, Catalyst-Free Synthesis of 1,2,4-Triazolo[1,5- a]pyridines from Enaminonitriles. Molecules 2024; 29:894. [PMID: 38398645 PMCID: PMC10892893 DOI: 10.3390/molecules29040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
A catalyst-free, additive-free, and eco-friendly method for synthesizing 1,2,4-triazolo[1,5-a]pyridines under microwave conditions has been established. This tandem reaction involves the use of enaminonitriles and benzohydrazides, a transamidation mechanism followed by nucleophilic addition with nitrile, and subsequent condensation to yield the target compound in a short reaction time. The methodology demonstrates a broad substrate scope and good functional group tolerance, resulting in the formation of products in good-to-excellent yields. Furthermore, the scale-up reaction and late-stage functionalization of triazolo pyridine further demonstrate its synthetic utility. A plausible reaction pathway, based on our findings, has been proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea; (K.L.); (Y.-A.K.); (C.J.); (J.S.); (S.R.); (J.-H.K.)
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea; (K.L.); (Y.-A.K.); (C.J.); (J.S.); (S.R.); (J.-H.K.)
| |
Collapse
|
2
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
3
|
Talha A, Favreau C, Bourgoin M, Robert G, Auberger P, El Ammari L, Saadi M, Benhida R, Martin AR, Bougrin K. Ultrasound-assisted one-pot three-component synthesis of new isoxazolines bearing sulfonamides and their evaluation against hematological malignancies. ULTRASONICS SONOCHEMISTRY 2021; 78:105748. [PMID: 34520963 PMCID: PMC8436160 DOI: 10.1016/j.ultsonch.2021.105748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In the present study, following a one-pot two-step protocol, we have synthesized novel sulfonamides-isoxazolines hybrids (3a-r) via a highly regioselective 1,3-dipolar cycloaddition. The present methodology capitalized on trichloroisocyanuric acid (TCCA) as a safe and ecological oxidant and chlorinating agent for the in-situ conversion of aldehydes to nitrile oxides in the presence of hydroxylamine hydrochloride, under ultrasound activation. These nitrile oxides could be engaged in 1,3-dipolar cycloaddition reactions with various alkene to afford the targeted sulfonamides-isoxazolines hybrids (3a-r). The latter were assessed for their antineoplastic activity against model leukemia cell lines (Chronic Myeloid Leukemia, K562 and Promyelocytic Leukemia, HL-60).
Collapse
Affiliation(s)
- Aicha Talha
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Cécile Favreau
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Maxence Bourgoin
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des, Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn, Batouta, BP 1014, Rabat, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des, Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn, Batouta, BP 1014, Rabat, Morocco
| | - Rachid Benhida
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco; Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 - 06108 Nice, France
| | - Anthony R Martin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 - 06108 Nice, France.
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| |
Collapse
|
4
|
Vorob′ev AY, Borodkin GI, Andreev RV, Shubin VG. 1,3-Dipolar cycloaddition of cyanopyridines to heterocyclic N-imines: experimental and theoretical study. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ibrahim HM, Behbehani H, Ahmed Arafa WA. A facile, practical and metal-free microwave-assisted protocol for mono- and bis-[1,2,4]triazolo[1,5-a]pyridines synthesis utilizing 1-amino-2-imino-pyridine derivatives as versatile precursors. RSC Adv 2020; 10:15554-15572. [PMID: 35495427 PMCID: PMC9052378 DOI: 10.1039/d0ra02256j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/10/2020] [Indexed: 01/07/2023] Open
Abstract
A facile and effective assembly of several substituted functionalized mono- and bis-[1,2,4]triazolo[1,5-a]pyridines from conveniently attainable 1-amino-2-imino-pyridines has been established. Using microwave irradiation speeds up the reaction efficiently, proceeding with a higher rate and yields than with conventional heating. In the presented protocol, a broad variety of carboxylic acids could be employed effectively to synthesize the respective derivatives via direct metal-free C–N bond construction. Interestingly, other substrates such as aldehydes (or their arylidene malononitriles), phenyl isothiocyanate, glyoxalic acid, and acrylonitriles could also provide the corresponding 1,2,4-triazolo[1,5-a]pyridines successfully. This versatile and convergent approach performs well with both deactivating and activating substrates in an environmentally benign manner compared with other already reported protocols. Other notable merits of the current strategy involve no need for column chromatography, no tedious work-up, and a direct pathway for the fast design of triazolopyridine frameworks. The identity of the newly synthesized compounds was established using several spectroscopic techniques, and X-ray single-crystal tools were employed to authenticate the suggested structures of some representative samples. A novel and highly efficient, protocol for synthesizing mono- and bis-[1,2,4]triazolo[1,5-a]pyridines has been established utilizing the readily attainable 1-amino-2-imino-pyridines and microwave irradiation as green energy source.![]()
Collapse
Affiliation(s)
| | - Haider Behbehani
- Chemistry Department
- Faculty of Science
- Kuwait University
- Safat 13060
- Kuwait
| | | |
Collapse
|
6
|
Yavari I, Khaledian O. A formal [3+2] cycloaddition reaction of N-methylimidazole as a masked hydrogen cyanide: access to 1,3-disubstitued-1H-1,2,4-triazoles. Chem Commun (Camb) 2020; 56:9150-9153. [DOI: 10.1039/d0cc01065k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-Methylimidazole (NMI) can act as a masked HCN in the synthesis of 1,3-disubstitued-1H-1,2,4-triazoles via a formal cycloaddition reaction of hydrazonoyl chloride with NMI.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Omid Khaledian
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|