1
|
Rafeeq H, Hussain A, Ambreen A, Zill-e-Huma, Waqas M, Bilal M, Iqbal HMN. Functionalized nanoparticles and their environmental remediation potential: a review. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:1007-1031. [DOI: 10.1007/s40097-021-00468-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2024]
|
2
|
Li R, Barel N, Subramaniyan V, Cohen O, Tibika F, Tulchinsky Y. Sulfonium cations as versatile strongly π-acidic ligands. Chem Sci 2022; 13:4770-4778. [PMID: 35655889 PMCID: PMC9067576 DOI: 10.1039/d2sc00588c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 01/31/2023] Open
Abstract
More than a century old, sulfonium cations are still intriguing species in the landscape of organic chemistry. On one hand they have found broad applications in organic synthesis and materials science, but on the other hand, while isoelectronic to the ubiquitous tertiary phosphine ligands, their own coordination chemistry has been neglected for the last three decades. Here we report the synthesis and full characterization of the first Rh(i) and Pt(ii) complexes of sulfonium. Moreover, for the first time, coordination of an aromatic sulfonium has been established. A thorough computational analysis of the exceptionally short S-Rh bonds obtained attests to the strongly π-accepting nature of sulfonium cations and places them among the best π-acceptor ligands available today. Our calculations also show that embedding within a pincer framework enhances their π-acidity even further. Therefore, in addition to the stability and modularity that these frameworks offer, our pincer complexes might open the way for sulfonium cations to become powerful tools in π-acid catalysis.
Collapse
Affiliation(s)
- Ruiping Li
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Nitsan Barel
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | | | - Orit Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
3
|
Cabeza JA, Fernández I, García-Álvarez P, García-Soriano R, Laglera-Gándara CJ, Toral R. Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(II), palladium(0) and gold(I) complexes. Dalton Trans 2021; 50:16122-16132. [PMID: 34668918 DOI: 10.1039/d1dt02967c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Ditertbutylphosphanylmethylpyrrole (H2pyrmPtBu2) and 2,2'-bis(diisopropylphosphanylmethyl)-5,5'-dimethyldipyrromethane ((HpyrmPiPr2)2CMe2) have been used to synthesize new P-donor-stabilized stannylenes in which the Sn atom is attached to one, SnCl(HpyrmPtBu2) (1) and Sn{N(SiMe3)2}(HpyrmPtBu2) (2), or two pyrrolyl-phosphane scaffolds, Sn(HpyrmPtBu2)2 (3), or to a dipyrromethane-diphosphane scaffold, Sn(pyrmPiPr2)2CMe2 (4). It has been found that stannylenes 3 and 4 are excellent precursors to transition metal complexes containing PSnP pincer-type ligands. Their reactions with chlorido transition metal complexes have afforded [PdCl{κ3P,Sn,P-SnCl(HpyrmPtBu2)2}] (6), [PdCl{κ3P,Sn,P-SnCl(pyrmPiPr2)2CMe2}] (7) and [Au{κ3P,Sn,P-SnCl(HpyrmPtBu2)2}] (8), which contain a PSnP pincer-type chloridostannyl ligand. While complexes 6 and 7 are square-planar palladium(II) complexes, compound 8 is an uncommon gold(I) complex having a T-shaped coordination geometry with a very long Sn-Au bond (3.120 Å). The T-shaped palladium(0) complex [Pd{κ3P,Sn,P-Sn(pyrmPiPr2)2CMe2}] (9), which contains an unprecedented PSnP pincer-type stannylene that behaves as a Z-type (σ-acceptor) ligand, has been prepared from 4 and [Pd(η3-C3H5)(η5-C5H5)].
Collapse
Affiliation(s)
- Javier A Cabeza
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain.
| | - Israel Fernández
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo García-Álvarez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain.
| | - Rubén García-Soriano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain.
| | - Carlos J Laglera-Gándara
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain.
| | - Rubén Toral
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain.
| |
Collapse
|
4
|
Murakami R, Maeda K, Inagaki F. Construction of 2,2-Dimethyloxepane Frameworks from Ene-Diols Catalyzed by Metal Catalyst or Brønsted Acid via 7-Endo-Trig Cyclization. Chem Pharm Bull (Tokyo) 2021; 69:892-895. [PMID: 34470953 DOI: 10.1248/cpb.c21-00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of 2,2-dimethyloxepane frameworks based on the 7-endo-trig cyclization of ene-diol using a catalytic amount of metal catalysts (Au, Ag) or Brønsted acid (TfOH) has been developed. Also, the spiro-type dioxabicyclic products were also derived from the diene-diols. For the condition using metal catalysts, the cyclization selectively reacted between the 1,1,3-trisubstituted alkenes and alcohols to form the 2,2-dimethyloxepane frameworks. On the other hand, the TfOH reacted with not only the 1,1,2-trisubstituted alkene, but also the 1-substituted and 1,2-disubstituted alkenes providing the corresponding cyclic ethers, which is quite different from the conditions of the metal catalysts.
Collapse
Affiliation(s)
- Ryo Murakami
- The Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Kakeru Maeda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | |
Collapse
|
5
|
Theulier CA, García-Rodeja Y, Mallet-Ladeira S, Miqueu K, Bouhadir G, Bourissou D. Gold-to-Boron Aryl Transfer from a T-Shaped Phosphine–Borane Gold(I) Complex. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril A. Theulier
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux - IPREM UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux - IPREM UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Ghenwa Bouhadir
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|
6
|
Zhang L, Zhu Q, Gao L, Yang L, Li W, Li S, Zhu J, Wang W, Zeng G. Rational design of the nickel-borane complex for efficient hydrogenation of styrene. J Comput Chem 2021; 42:545-551. [PMID: 33421156 DOI: 10.1002/jcc.26480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The Ni-B complex 1BCF with a facilely accessible monophosphine (Pt Bu3 ) unit was theoretically designed, which was found to be more active than that with an ambiphilic ligand for hydrogenation of styrene. Substituting Pt Bu3 with a stronger electron donating ligand N-heterocyclic carbene largely improves the activity of the Ni-B complex.
Collapse
Affiliation(s)
- Lei Zhang
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing, China.,School of Physics, Nanjing University, Nanjing, China
| | - Qin Zhu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liuzhou Gao
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Linlin Yang
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Wang
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing, China.,School of Physics, Nanjing University, Nanjing, China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Franchino A, Montesinos-Magraner M, Echavarren AM. Silver-Free Catalysis with Gold(I) Chloride Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Kato M, Ueta Y, Ito S. Gold(I) Complexation of Phosphanoxy-Substituted Phosphaalkenes for Activation-Free LAuCl Catalysis. Chemistry 2021; 27:2469-2475. [PMID: 33078876 DOI: 10.1002/chem.202004281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Indexed: 12/31/2022]
Abstract
The phosphanoxy-substituted phosphaalkene bearing the P=C-O-P skeleton can be prepared from diphosphene Mes*P=PMes* (Mes*=2,4,6-tBu3 C6 H2 ), and their use for catalysis is of interest. In this paper, complexation of the phosphanoxy-substituted phosphaalkenes with gold are investigated, and the catalytic activity of the mono- and bis(chlorogold) complexes are subsequently evaluated. Reaction of the P=C-O-P compound with (tht)AuCl (tht=tetrahydrothiophene) showed dominant coordination on the sp3 phosphorus, and complete coordination on the sp2 phosphorus required removal of tetrahydrothiophene. Atoms In Molecules (AIM) analysis based on the X-ray structure of the mono(chlorogold) complex indicated a pseudo coordinating interaction between the gold center and the P=C unit. The bis(chlorogold) complexes displayed conformational isomerism, and catalyzed the cycloisomerization/alkoxycyclization of 1,6-enyne and for hydration of terminal alkyne without activation treatment. Even the mono(chlorogold) complexes catalyzed the alkoxycyclization reactions without a silver co-catalyst, indicating that the alcohols were effective in activating the AuCl unit.
Collapse
Affiliation(s)
- Miki Kato
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| | - Yasuhiro Ueta
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| | - Shigekazu Ito
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| |
Collapse
|
9
|
Takemoto S, Yoshii K, Yamano T, Tsurusaki A, Matsuzaka H. Metal-metal multiple bond formation induced by σ-acceptor Lewis acid ligands. Chem Commun (Camb) 2021; 57:923-926. [PMID: 33393949 DOI: 10.1039/d0cc07278h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Cp*Ru(μ-NHPh)]2 (Cp* = η5-C5Me5) with Lewis acids of the type MX2 (M = Zn, Sn, Pb; X = Cl, OTf) affords Ru2 → M donor-acceptor adducts characterized as π complexes of a Ru[double bond, length as m-dash]Ru double bond with M(ii) Lewis acids. The results illustrate for the first time the ability of σ-acceptor Lewis acid ligands to induce the formation of a metal-metal multiple bond via stabilizing dative interactions.
Collapse
Affiliation(s)
- Shin Takemoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Kaname Yoshii
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Takahiro Yamano
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Hiroyuki Matsuzaka
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
10
|
Abstract
Four carbon ring systems are frequently present in natural products with remarkable biological activities such as terpenoids, alkaloids, and steroids. The development of new strategies for the assembly of these structures in a rapid and efficient manner has attracted the interest of synthetic chemists for a long time. The current research is focused mainly on the development of synthetic methods that can be performed under mild reaction conditions with a high tolerance to functional groups. In recent years, gold complexes have turned into excellent candidates for this aim, owing to their high reactivity, and are thus capable of promoting a wide range of transformations under mild conditions. Their remarkable efficiency has been thoroughly demonstrated in the synthesis of complex organic molecules from simple starting materials. This review summarizes the main synthetic strategies described for gold-catalyzed four-carbon ring formation, as well as their application in the synthesis of natural products.
Collapse
|
11
|
Affiliation(s)
- Ronald L. Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Tiddens MR, Moret ME. Metal-Ligand Cooperation at Phosphine-Based Acceptor Pincer Ligands. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|