1
|
Hu G, Meng X, Zang C, Wang Z, Yang W, Hu Y. Development of a fluorescent probe based on a tricyano structure for the detection of PhSH in environmental and biological samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122943. [PMID: 37269655 DOI: 10.1016/j.saa.2023.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
In this study, a NIR fluorescent probe based on ICT principles was developed for the detection of phenylthiophenol. An excellent fluorescent mother nucleus is constructed with tricyano groups, and benzenesulfonate was introduced as a specific recognition site for thiophene, which can be used for rapid detection of thiophenol. The probe has a significant Stokes shift (220 nm). Meanwhile, it had rapid response to thiophene and high specificity. The fluorescence intensity of the probe at 700 nm showed a good linear relationship with thiophene concentration in the range of 0 to 100 μM, and the detection limit was as low as 45 nM. The probe had also been successfully applied to the detection of thiophene in real water samples. MTT assay showed low cytotoxicity and excellent fluorescence imaging in live cells.
Collapse
Affiliation(s)
- Guoxing Hu
- School of Pharmaceutical Science, Nanjing Tech University, China
| | - Xianteng Meng
- School of Pharmaceutical Science, Nanjing Tech University, China
| | - Chao Zang
- School of Pharmaceutical Science, Nanjing Tech University, China
| | - Zhi Wang
- School of Pharmaceutical Science, Nanjing Tech University, China
| | - Wenge Yang
- School of Pharmaceutical Science, Nanjing Tech University, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, China.
| |
Collapse
|
2
|
Wang L, Hou X, Fang H, Yang X. Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition. Curr Med Chem 2021; 29:2476-2489. [PMID: 34473614 DOI: 10.2174/0929867328666210902101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Given the crucial association of hydrogen peroxide with a wide-range of human diseases, this compound has currently earned the reputation of being popular biomolecular target. Although various of analytical methods have attracted our attention, fluorescent probes have been used as prominent tools to determine H2O2 to reflect the physiological and pathological conditions of biological systems, As the sensitive responsive portion of these probes, Boronate ester and boronic acid groups are vital reporter as the sensitive responsive part for H2O2 recognition. In this review, we summarized boronate ester/boronic acid group-based fluorescent probes for H2O2 reported from 2012 to 2020 and generally classify the fluorophores into six categories to exhaustively elaborate the design strategy and comprehensive systematic performance. We hope that this review will inspire the exploration of new fluorescent probes based on boronate ester/boronic acid groups for detection of H2O2 and other relevant analytes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xuben Hou
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Hao Fang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xinying Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| |
Collapse
|
3
|
Colorimetric detection of hydrogen peroxide with gadolinium complex of phenylboronic acid functionalized 4,5-diazafluorene. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Peng W, Athukorale S, Hu J, Cui X, Zhang D. Kinetic spectroscopic quantification using two-step chromogenic and fluorogenic reactions: From theoretical modeling to experimental quantification of biomarkers in practical samples. Anal Chim Acta 2021; 1153:338293. [PMID: 33714449 DOI: 10.1016/j.aca.2021.338293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based on the reaction rate between the CG/FG probe and its targeted molecule. Little progress has been made in the past half century in either the theory or the applications of the kinetic spectroscopic quantification methods. Current kinetic CG/FG quantification is limited only to a subset of CG/FG reactions that can be approximated as the single-step process, and more problematically, to research samples with no matrix interferences. Reported herein is a kinetic quantification model established for multistep CG/FG reactions and a proof-of-concept demonstration of direct kinetic FG quantification of biomarkers in practical samples. The kinetic spectral intensity of the CG/FG reactions with two rate-limiting steps comprises three temporal regions: an accelerating period where rate of signal change is increasingly rapid, a linear region where the rate of signal change is approximately constant, and a deceleration region where the rate of signal increase becomes progressively small. Kinetic quantification is performed through simple linear-curve-fitting of the kinetic signal in its linear time-course region. The theoretical model is validated with the dual CG/FG 2-thiobarbituric acid (TBA) and malondialdehyde (MDA) reaction. Proof-of-concept kinetic spectroscopic quantification of analytes in practical samples is demonstrated with the FG quantification of MDA in canned chicken. The only sample preparation is bench-top centrifugation followed by two sequential syringe filtrations. The total kinetic FG assay time is less than 10 min, more than 10 times more efficient than the current equilibrium-based MDA assay. The theoretical model and the measurement design strategies offered by this work should help transform the current kinetic spectroscopic quantification from a niche research tool to an indispensable technique for time-sensitive applications.
Collapse
Affiliation(s)
- Weiyu Peng
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Sumudu Athukorale
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Juan Hu
- Department of Mathematical Sciences, DePaul University, Chicago, IL, 60604, United States
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States.
| |
Collapse
|
5
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|