1
|
Lei SH, Zou YF, Qu JP, Kang YB. TBN as Organic Redox Cocatalyst for Oxidative Tiffeneau-Demjanov-Type Rearrangement Using O 2 as Sole Oxidant. Org Lett 2024; 26:6454-6458. [PMID: 39037151 DOI: 10.1021/acs.orglett.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The Tiffeneau-Demjanov-type rearrangement is a ring-expansion reaction involving the cationic rearrangement of cyclic alcohols. The carbocation intermediates can be generated in situ via various means, including Wacker oxidation. In near recent reports on the reinvestiagtions by Wahl et al. (Sietmann, J.; Tenberge, M.; Wahl, J. M. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew. Chem., Int. Ed. 2023, 62, e202215381) and Zhu et al. (Feng, Q.; Wang, Q.; Zhu, J.-P. Oxidative Rearrangement of 1,1-Disubstituted Alkenes to Ketones. Science 2023, 379, 1363-1368), stoichiometric oxidants were involved. In this work, we report the Tiffeneau-Demjanov-type rearrangement can be smoothly promoted by the Pd-TBN cocatalyzed aerobic Wacker oxidation using molecular oxygen as the sole oxidant. tert-Butanol is essential for achieving high yields. Since the first report by Grigg et al. in 1977 (Boontanonda, P.; Grigg, R. J. Palladium (II)-Catalysed Ring Expansion of Methylenecyclobutanes and Related Systems. J. Chem. Soc. Chem. Commun. 1977, 17, 583-584), the five-decade journey of Pd-catalyzed Tiffeneau-Demjanov-type rearrangement returns to the aerobic again.
Collapse
Affiliation(s)
- Shu-Hui Lei
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu-Fan Zou
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Fujii T, Wang Q, Zhu J. Arylative Ring Expansion of 3-Vinylazetidin-3-Ols and 3-Vinyloxetan-3-Ols to Dihydrofurans by Dual Palladium and Acid Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403484. [PMID: 38525663 DOI: 10.1002/anie.202403484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
In contrast to the well-studied 1-vinylcyclobutanols, the reactivity of 3-vinylazetidin-3-ols 1 and 3-vinyloxetan-3-ols 2 under transition metal catalysis remains largely unexplored. We report herein their unique reactivity under dual palladium and acid catalysis. In the presence of a catalytic amount of Pd(OAc)2(PPh3)2, AgTFA and triflic acid, the reaction of 1 or 2 with aryl iodides affords 2,3,4-trisubstituted dihydrofurans, which are valuable heterocycles in organic synthesis. Mechanistic studies reveal that this arylative ring-expansion reaction proceeds via a domino process involving Heck arylation of alkene, acid-catalyzed transposition of allylic alcohol and ring opening of the azetidine/oxetane by an internal hydroxyl group.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Smyrnov V, Waser J. Semipinacol Rearrangement of Cyclopropenylcarbinols for the Synthesis of Highly Substituted Cyclopropanes. Org Lett 2023; 25:6999-7003. [PMID: 37707959 DOI: 10.1021/acs.orglett.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An electrophile-induced semipinacol rearrangement of cyclopropenylcarbinols is reported. This transformation gives access to various polyfunctionalized cyclopropanes under mild metal-free conditions. The scope of the reaction includes iodine, sulfur and selenium electrophiles, aryl and strained ring migrating groups, and diverse substitution patterns on the cyclopropene. The reaction is particularly efficient for the synthesis of small ring-containing spirocycles, which are important rigid three-dimensional building blocks for medicinal chemistry.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Sietmann J, Tenberge M, Wahl JM. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew Chem Int Ed Engl 2023; 62:e202215381. [PMID: 36416612 PMCID: PMC10108300 DOI: 10.1002/anie.202215381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Methylenecyclobutanes are found to undergo Wacker oxidation via a semi-pinacol-type rearrangement. Key to a successful process is the use of tert-butyl nitrite as oxidant, which not only enables efficient catalyst turn-over but also ensures high Markovnikov-selectivity under mild conditions. Thus, cyclopentanones (26 examples) can be accessed in an overall good yield and excellent selectivity (up to 97 % yield, generally >99 : 1 ketone:aldehyde ratio). Stereochemical analysis of the reaction sequence reveals migration aptitudes in line with related 1,2-shifts. By introducing a pyox ligand to palladium, prochiral methylenecyclobutanes can be desymmetrized, thus realizing the first enantioselective Wacker oxidation.
Collapse
Affiliation(s)
- Jan Sietmann
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 3648149MünsterGermany
| | - Marius Tenberge
- Department ChemieJohannes Gutenberg-UniversitätDuesbergweg 10–1455128MainzGermany
| | - Johannes M. Wahl
- Department ChemieJohannes Gutenberg-UniversitätDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
5
|
Parsons PJ, Natho P, Allen LAT. A Cyclobutanol Ring-Expansion Approach to Oxygenated Carbazoles: Total Synthesis of Glycoborine, Carbazomycin A and Carbazomycin B. Synlett 2023. [DOI: 10.1055/s-0042-1751411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe transition-metal-free total syntheses of the oxygenated carbazole natural products glycoborine, carbazomycin A and carbazomycin B are reported. The key step involves an NBS-mediated cyclobutanol ring expansion to 4-tetralones for the preparation of the tricyclic carbazole core.
Collapse
|
6
|
Song L, Zhou Y, Liang H, Li H, Lai Y, Yao H, Lin R, Tong R. Two Green Protocols for Halogenative Semipinacol Rearrangement. J Org Chem 2023; 88:504-512. [PMID: 36480595 DOI: 10.1021/acs.joc.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semipinacol rearrangement is a special type of Wagner-Meerwein rearrangement that involves carbocation 1,2-rearrangement to provide carbonyl compounds with an α-quaternary carbon center. It has been strategically used for natural product synthesis and construction of highly congested quaternary carbons. Herein, we report a safe and green protocol that uses oxone/halide and Fenton bromide to achieve halogenative semipinacol rearrangement. The key feature of this method is the green in situ generation of reactive halogenating species from oxidation of halide with oxone or H2O2, which produces a nontoxic byproduct (potassium sulfate or water). Easy operation (insensitive to air and moisture) at room temperature without using special equipment adds additional advantage over previous methods.
Collapse
Affiliation(s)
- Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Hanbin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Hongzuo Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yunrong Lai
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510275, China
| | - Ran Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510275, China
| |
Collapse
|
7
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls. Angew Chem Int Ed Engl 2022; 61:e202206501. [PMID: 35621411 DOI: 10.1002/anie.202206501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/27/2022]
Abstract
We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.
Collapse
Affiliation(s)
- Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
8
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine‐Membered Carbonate Bridged Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiqi Jia
- Zhengzhou University Green Catalysis Center 重庆大学虎溪校区药学院 zhengzhou CHINA
| | - Yuhong Tian
- Chongqing University School of Pharmaceutical Sciences Chongqing CHINA
| | - Xin Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Pengfei Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yu Lan
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yan
- Chongqing University Innovative Drug Research Center No.55 Daxuecheng South Rd 401331 Chongqing CHINA
| |
Collapse
|
9
|
Lusi RF, Perea MA, Sarpong R. C-C Bond Cleavage of α-Pinene Derivatives Prepared from Carvone as a General Strategy for Complex Molecule Synthesis. Acc Chem Res 2022; 55:746-758. [PMID: 35170951 PMCID: PMC9616203 DOI: 10.1021/acs.accounts.1c00783] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of complex molecules (e.g., biologically active secondary metabolites) remains an important pursuit in chemical synthesis. By virtue of their sophisticated architectures, complex natural products inspire total synthesis campaigns that can lead to completely new ways of building molecules. In the twentieth century, one such paradigm which emerged was the use of naturally occurring "chiral pool terpenes" as starting materials for total synthesis. These inexpensive and naturally abundant molecules provide an easily accessed source of enantioenriched material for the enantiospecific preparation of natural products. The most common applications of chiral pool terpenes are in syntheses where their structure can, entirely or largely, be superimposed directly onto a portion of the target structure. Less straightforward uses, where the structure of the starting chiral pool terpene is not immediately evident in the structure of the target, can be more challenging to implement. Nevertheless, these "nonintuitive" approaches illustrate the ultimate promise of chiral pool-based strategies: that any single chiral pool terpene could be applied to syntheses of an indefinite number of structurally diverse complex synthetic targets.By definition, such strategies require carefully orchestrated sequences of C-C bond forming and C-C cleaving reactions which result in remodeling of the terpene architecture. The combination of traditional rearrangement chemistry and transition-metal-catalyzed C-C cleavage methods, the latter of which were primarily developed in the early twenty-first century, provide a rich and powerful toolbox for implementing this remodeling approach. In this Account, we detail our efforts to use a variety of C-C cleavage tactics in the skeletal remodeling of carvone, a chiral pool terpene. This skeletal remodeling strategy enabled the reorganization of the carvone scaffold into synthetic intermediates with a variety of carboskeletons, which we, then, leveraged for the total syntheses of structurally disparate terpene natural products.We begin by describing our initial investigations into various, mechanistically distinct C-C cleavage processes involving cyclobutanols synthesized from carvone. These initial studies showcased how electrophile-mediated semipinacol rearrangements of these cyclobutanols can lead to [2.2.1]bicyclic intermediates, and how Rh- and Pd-catalyzed C-C cleavage can lead to a variety of densely functionalized cyclohexenes pertinent to natural product synthesis. We, then, present several total syntheses using these synthetic intermediates, beginning with the bridged, polycyclic sesquiterpenoid longiborneol, which was synthesized from a carvone-derived [2.2.1]bicycle following a key semipinacol rearrangement. Next, we discuss how several members of the macrocyclic phomactin family were synthesized from a cyclohexene derivative prepared through a Rh-catalyzed C-C cleavage reaction. Finally, we describe our synthesis of the marine diterpene xishacorene B, which was prepared using a key Pd-catalyzed C-C cleavage/cross-coupling that facilitated the assembly of the core [3.3.1]bicycle that is resident in the natural product structure.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Melecio A Perea
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Leclair A, Wang Q, Zhu J. Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexandre Leclair
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Jaiswal V, Godara M, Das D, Gandon V, Saha J. Leveraging the Domino Skeletal Expansion of Thia-/Selenazolidinones via Nitrogen-Atom Transfer in Hexafluoroisopropanol: Room Temperature Access to Six-Membered S/Se,N-Heterocycles. J Org Chem 2021; 87:613-627. [PMID: 34904438 DOI: 10.1021/acs.joc.1c02621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, a highly regioselective domino skeletal-expansion process that transforms 2-aminothiazolidinone into six-membered S,N-heterocycle is developed with the aid of TMS-azide in hexafluoroisopropanol (HFIP) at ambient temperature. Functioning of the C2 tertiary amine as latent reactive group on thiazolidinone moiety was the key to this development, which allowed relay substitution with azide and imparted subsequent ring-expansion under metal/acid free-conditions. The reaction also underscored an intermolecular nitrogen-atom transfer process from TMS-azide leading to final products, where any intermediary azidothiazolidinone was absent. The strategy was extendable to analogous synthesis of Se,N-heterocycles, and furthermore, late-stage drug-modification and follow-up transformations were also performed. Density functional theory calculations and control experiments provided important mechanistic insights and highlighted potential roles of HFIP in the transformation.
Collapse
Affiliation(s)
- Vandana Jaiswal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Mangilal Godara
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Dinabandhu Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
12
|
Oeser P, Edlová T, Čubiňák M, Tobrman T. Transition‐Metal‐Free Ring‐Opening Reaction of 2‐Halocyclobutanols through Ring Contraction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Petr Oeser
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tereza Edlová
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Marek Čubiňák
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
13
|
Biletskyi B, Colonna P, Masson K, Parrain JL, Commeiras L, Chouraqui G. Small rings in the bigger picture: ring expansion of three- and four-membered rings to access larger all-carbon cyclic systems. Chem Soc Rev 2021; 50:7513-7538. [PMID: 34002179 DOI: 10.1039/d0cs01396j] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of the inherent ring strain of cyclobutane and cyclopropane derivatives allows a rapid build-up of molecular complexity. This review highlights the state-of-the-art of the ring expansions of three- and four-membered cycles and is organised by types of reactions with emphasis on the reaction mechanisms. Selected examples are discussed to illustrate the synthetic potential of this elegant synthetic tool.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Kévin Masson
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
14
|
Natho P, Yang Z, Allen LAT, Rey J, White AJP, Parsons PJ. An entry to 2-(cyclobut-1-en-1-yl)-1 H-indoles through a cyclobutenylation/deprotection cascade. Org Biomol Chem 2021; 19:4048-4053. [PMID: 33885127 DOI: 10.1039/d1ob00430a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A transition-metal-free strategy for the synthesis of 2-(cyclobut-1-en-1-yl)-1H-indoles under mild conditions is described herein. A series of substituted 2-(cyclobut-1-en-1-yl)-1H-indoles are accessed by a one-pot cyclobutenylation/deprotection cascade from N-Boc protected indoles. Preliminary experimental and density functional theory calculations suggest that a Boc-group transfer is involved in the underlying mechanism.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Zeyu Yang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Lewis A T Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Juliette Rey
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Philip J Parsons
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| |
Collapse
|
15
|
Abe T, Hirao S. Rapid access to indole-fused bicyclo[2.2.2]octanones by merging the umpolung strategy and molecular iodine as a green catalyst. Org Biomol Chem 2021; 18:4193-4197. [PMID: 32458925 DOI: 10.1039/d0ob01038c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot synthesis of indole-fused bicyclo[2.2.2]octanones from DiMeOIN and 2-cyclohexen-1-one is accomplished under an iodine catalyst. The simple and metal-free conditions provide a practical tool to construct Csp3-rich complex molecules via coupling cyclization.
Collapse
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan.
| | - Seiya Hirao
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan.
| |
Collapse
|
16
|
Sandvoß A, Wiest JM. Recent Advances in Enantioselective Desymmetrizations of Prochiral Oxetanes. Chemistry 2021; 27:5871-5879. [PMID: 33274788 PMCID: PMC8049043 DOI: 10.1002/chem.202004923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Strain relief of oxetanes offers a plethora of opportunities for the synthesis of chiral alcohols and ethers. In this context, enantioselective desymmetrization has been identified as a powerful tool to construct molecular complexity and this has led to the development of elegant strategies on the basis of transition metal, Lewis acid, and Brønsted acid catalysis. This review highlights recent examples that harness the inherent reactivity of prochiral oxetanes and offers an outlook on the immense possibilities for synthetic application.
Collapse
Affiliation(s)
- Alexander Sandvoß
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Johannes M. Wiest
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
17
|
Qiu Y, Wei F, Ye L, Zhao M. Advances in Trifluoromethylation-Promoted Functional Group Migration of Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Natho P, Rouse AB, Greenfield JL, Allen LA, White AJ, Yang Z, Parsons PJ. Regioselective synthesis of 1- and 4-tetralones from heteroaryl-3-cyclobutanols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Raclea RC, Natho P, Allen LAT, White AJP, Parsons PJ. Oxidative Deconstruction of Azetidinols to α-Amino Ketones. J Org Chem 2020; 85:9375-9385. [PMID: 32543189 DOI: 10.1021/acs.joc.0c00986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A silver-mediated synthesis of α-amino ketones via the oxidative deconstruction of azetidinols has been developed using a readily scalable protocol with isolated yields up to 80%. The azetidinols are easily synthesized in one step and can act as protecting groups for these pharmaceutically relevant synthons. Furthermore, mechanistic insights are presented and these data have revealed that the transformation is likely to proceed through the β-scission of an alkoxy radical, followed by oxidation and C-N cleavage of the resulting α-amido radical.
Collapse
Affiliation(s)
- Robert-Cristian Raclea
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Philipp Natho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Lewis A T Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| | - Philip J Parsons
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, U.K
| |
Collapse
|