1
|
Zhang Q, Xu Y, Liang X, Ke Z. Amphiphilic Indoles as Efficient Phase-Transfer Catalysts for Bromination in Water. CHEMSUSCHEM 2022; 15:e202200574. [PMID: 35404501 DOI: 10.1002/cssc.202200574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Brominated compounds are important, but they are usually prepared in organic solvents. Here, efficient amphiphilic indole-based phase-transfer organocatalysts were developed for environmentally benign bromination reactions in water. As test reactions, hydroxybromination of olefins and aromatic bromination could be conducted in a greener and more sustainable manner compared with methods using organic solvents, producing the corresponding bromides in good yields. Some pure products could be obtained without column chromatography.
Collapse
Affiliation(s)
- Qingyu Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Yongyuan Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Xiaochen Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| |
Collapse
|
2
|
Zhao L, Qiu C, Zhao L, Yin G, Li F, Wang C, Li Z. Base-promoted, CBr 4-mediated tandem bromination/intramolecular Friedel-Crafts alkylation of N-aryl enamines: a facile access to 1H- and 3H-indoles. Org Biomol Chem 2021; 19:5377-5382. [PMID: 34047749 DOI: 10.1039/d1ob00731a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described here is a general and highly efficient method for the synthesis of 1H- and 3H-indoles. In the presence of CBr4 and a suitable base, the cyclization of N-aryl enamines proceeds with high efficiency. Unlike previous intramolecular cross dehydrogenative coupling (CDC) of the same substrates, this process does not require the use of either a transition metal or a stoichiometric amount of oxidant. This method also features operational simplicity, easy scalability and good substrate tolerability. Control experiments indicate the reactions may proceed in a tandem sequence of bromination and intramolecular Friedel-Crafts alkylation in a simple one-pot procedure.
Collapse
Affiliation(s)
- Lan Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Changfu Qiu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lixin Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chunhua Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China. and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
3
|
Wong J, Yeung YY. Solvent and catalyst-free bromofunctionalization of olefins using a mechanochemical approach. RSC Adv 2021; 11:13564-13570. [PMID: 35423890 PMCID: PMC8697521 DOI: 10.1039/d1ra01816g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Bromofunctionalizations of olefins are an important class of chemical transformations. N-Bromoimide reagents are commonly used in these reactions but catalysts and chlorinated solvents are often employed to achieve a reasonable reaction rate. In this report, we present a solvent and catalyst-free bromofunctionalization of olefins using mechanical force. Efficient bromofunctionalization of olefins including bromolactonization, bromocycloetherification, and intermolecular bromoesterification were achieved under solvent and catalyst-free conditions using a mechanochemical approach.![]()
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Ying-Yeung Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| |
Collapse
|
4
|
Li Z, Zhao L, Liang L, Zhao L, Li F, Wang C, Li Z. Additive-Free Copper(I)-Mediated Synthesis of 5- or 6-Brominated 2-Aryl-1H-Indole-3-Carboxylates from α,α-Dibromo β-Iminoesters. J Org Chem 2021; 86:1964-1971. [DOI: 10.1021/acs.joc.0c02497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhenfa Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lan Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Liuyi Liang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lixin Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chunhua Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|