Vyhivskyi O, Baudoin O. Total Synthesis of the Diterpenes (+)-Randainin D and (+)-Barekoxide via Photoredox-Catalyzed Deoxygenative Allylation.
J Am Chem Soc 2024;
146. [PMID:
38618944 PMCID:
PMC11046436 DOI:
10.1021/jacs.4c02224]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
We report the first enantioselective total synthesis of diterpenoid randainin D, which possesses a hydroazulenone core with a β-substituted butenolide moiety on the cycloheptane ring. The trans-5/7 ring system was formed via a highly challenging ring-closing metathesis delivering the tetrasubstituted cycloheptenone. The butenolide moiety was installed via a novel deoxygenative allylation under Ir-photoredox catalysis, employing methyl oxalate as a red/ox tag. Moreover, the developed allylation was successfully utilized in the 7-step total synthesis of (+)-barekoxide. This study suggests that this deoxygenative allylation method is a promising strategy for the formation of Cq-C(sp3) bonds (Cq = quaternary center) in the context of natural product synthesis.
Collapse