Nishimura Y, Kubo T, Takayama S, Yoshida H, Cho H. Palladium-catalyzed/copper-mediated carbon-carbon cross-coupling reaction for synthesis of 6-unsubstituted 2-aryldihydropyrimidines.
RSC Adv 2022;
12:28113-28122. [PMID:
36320260 PMCID:
PMC9527642 DOI:
10.1039/d2ra05155a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Dihydropyrimidines (DPs) show a wide range of biological activities for medicinal applications. Among the DP derivatives, 2-aryl-DPs have been reported to display remarkable pharmacological properties. In this work, we describe a method for the synthesis of hitherto unavailable 6-unsubstituted 2-aryl-DPs by Pd-catalyzed/Cu-mediated carbon–carbon cross-coupling reaction of 1-Boc 2-methylthio-DPs with organostannane reagents. The Boc group of the substrate significantly increases the substrate reactivity. Aryl tributylstannanes having various substituents such as MeO, Ph, CF3, CO2Me, and NO2 groups smoothly afforded the corresponding products in high yields. Various heteroaryl tributylstannanes having 2-, or 3-thienyl, 2-, or 3-pyridinyl groups were also applicable to the reaction. Regarding the substituents at the 4-position, the reactions of DPs bearing various aryl and alkyl substituents proceeded smoothly to give the desired products. The Boc group of the products was removed under a standard acidic condition to produce N-unsubstituted DP as a mixture of the tautomers in quantitative yields. The synthetic procedure was also applied to 4,4,6-trisubstituted 2-methylthio-DP to give novel 2,4,4,5,6-pentasubstituted DP. Therefore, the Pd-catalyzed/Cu-mediated reaction should help expand the DP-based molecular diversity, which would impact biological and pharmacological studies.
This protocol enables the synthesis of 6-unsubstituted 2-aryldihydropyrimidines using various substituents at the 2- and 4-positions, which would impact dihydropyrimidine-based biological and pharmacological studies.![]()
Collapse