1
|
Erdemir S, Oguz M, Malkondu S. Fast tracking of Hg 2+ ions in living cells, food, and environmental samples using a new mitochondria-targeted red emitting probe and its portable applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125637. [PMID: 39756568 DOI: 10.1016/j.envpol.2025.125637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg2+ in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg2+ ions in various real samples such as rice, garlic, shrimp, and root samples. When interacting with Hg2⁺, the non-fluorescent probe solution emitted strong red fluorescence at 638 nm in a solution of DMSO/H2O (1/9, v/v). The other ions showed no significant interference during Hg2+ detection. In addition, PyS displayed a rapid response time among the reaction-based systems (3-4 min), low detection limit (72.5 nM), linear response trend in the range of 0-22.00 μM, and large Stokes shift (243 nm). Additionally, PyS can serve as a paper, cotton swab, and polysulfone capsule kit for qualitative detection of Hg2⁺, enabling on-site quantitative detection of Hg2⁺ in beach soil and water samples using a smartphone app. It also can effectively detect Hg2⁺ in living cells in a concentration-dependent manner, thereby highlighting its potential for bioimaging in living organisms.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
2
|
Kaur A, Chaudhary RP. Review on Synthesis of 2-(2-Hydroxyaryl) Benzothiazoles (HBT) for Excited-State Intra-molecular Proton Transfer (ESIPT)-Based Detection of Ions and Biomolecules. Top Curr Chem (Cham) 2024; 382:26. [PMID: 39023635 DOI: 10.1007/s41061-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
In this review, we present a systematic and comprehensive summary of the recent developments in the synthetic strategies of 2-(2-hydroxyarylsubstituted)-benzothiazole (HBT) framework along with incorporation of various substituents on phenolic and benzothiazole rings which affect the emission process. The literature, spanning the years 2015-2024, on excited-state intramolecular proton transfer (ESIPT)-based studies of HBT derivatives comprising the effects of solvent polarity, substituents, and extended conjugation on fluorophores has been searched. ESIPT, intramolecular charge transfer, and aggregation-induced emissions enable these fluorescent probes to specifically interact with analytes, thereby altering their luminescence characteristics to achieve analyte detection. These fluorescent probes exhibit large Stokes shifts, high quantum yields, and excellent color transitions. Finally, the applications of HBTs as ESIPT-based fluorescent probes for the detection of cations, anions, and biomolecules have been summarized. We anticipate that this review will provide a comprehensive overview of the current state of research in this field and encourage researchers to develop novel ESIPT-based fluorophores with new applications.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, 148106, India
| | - R P Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, 148106, India.
| |
Collapse
|
3
|
Nehra N, Kaushik R. ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5268-5285. [PMID: 37800698 DOI: 10.1039/d3ay01249b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Fluorescent and colourimetric probes for small analytes (cations, anions and neutral molecules) have drawn significant attention in recent years. These probes interact with analytes and induce spectral change due to the variations in the photo-physical properties of the fluorophore/chromophore used. Among several photo-physical mechanisms, ESIPT (excited state intramolecular proton transfer) based probes are more advantageous due to their photo-physical properties viz. solvent polarity effect, large spectral shift with multi-channel fluorescence, high quantum yield etc. In recent years, ESIPT-based probes have shown several promising applications, especially monitoring small analytes in biological samples, smartphone app-assisted heavy metal detection in environmental samples, inkless writing, anti-counterfeiting applications etc. Therefore, this review is dedicated to recently reported ESIPT-based probes for small analytes. We have highlighted the organic units responsible for the ESIPT mechanism, their photo-physical parameters, selectivity and sensitivity properties and recent advances in their applications.
Collapse
Affiliation(s)
- Nidhi Nehra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Kaur R, Rana S, Kaur R, Jyoti, Kaur N, Singh B. Bio-mimetic selectivity in Hg 2+ sensing developed via electro-copolymerized PEDOT and benzothiazole-Au nanoparticles composite. Mikrochim Acta 2023; 190:396. [PMID: 37715841 DOI: 10.1007/s00604-023-05972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
To eliminate the potential health risks of mercury, development of stable and selective mercury sensor with high sensitivity is the need of the hour. To address this, a novel PEDOT-AA-BTZ-Au-based Hg2+ selective, hybrid electrochemical sensor has been designed by following a simple protocol for electrode fabrication. The electrode was designed by carefully optimizing the onset oxidation potential of supramolecule 2-(anthracen-9-yl)benzo[d]thiazole (AA-BTZ) and conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT), using copolymerization approach followed by dropcasting of gold nanoparticles (AuNPs). The designed electrode offered synergistic effects thus augmenting the electrical conductivity and adsorption capacity as depicted by its porous surface morphology. The highly sensitive analytical signal was generated by sulphur pockets present in AA-BTZ and PEDOT conducting framework. This is further complemented by the selectivity offered by the soft interactions between AuNPs and Hg2+ resulting in a low detection limit of 0.60 nM. The prepared system was further utilized for sensing Hg2+ ion in real systems including lake water and cosmetic samples. Low interference from other ions and better reproducibility further established the suitability of the designed transducer system for future on-site sensing.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India.
| | - Ranjeet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jyoti
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Bhupender Singh
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- Department of Chemistry, Pandit Neki Ram Sharma Government College Rohtak, Rohtak, Haryana, 124001, India
| |
Collapse
|
5
|
Liu Q, Liu Y, Xing Z, Huang Y, Ling L, Mo X. A novel dual-function probe for fluorescent turn-on recognition and differentiation of Al 3+ and Ga 3+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122076. [PMID: 36368269 DOI: 10.1016/j.saa.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel dual-function probe BMP based on benzothiazole was easily synthesized and characterized through common optical technique. In the system consisting of DMF/H2O (v/v, 2/3), probe BMP showed azure and blue-green to Al3+ and Ga3+, respectively. Besides, the binding ratios of BMP to Al3+ and Ga3+ were determined as 1:1, which confirmed by Job's plot. Furthermore, for Al3+ and Ga3+, the limit of detection (LOD) was determined to be 1.51 × 10-6 M and 4.28 × 10-6 M, respectively. Moreover, it was worth noting that BMP showed good performances in paper colorimetry, cell phone colorimetric identification and cell imaging.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yatong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China.
| | - Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Xinglin Mo
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| |
Collapse
|
6
|
Hydrogen bond-induced planarity and ESPT Process: A theoretical insight into the sensing mechanism of a fluorescent probe for hypochlorous acid. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Su P, Wen L, Yan J, Zheng K, Zhang N. Baso-chromic spiropyrrolizine: The spiromerocyanine isomerization and alkaline detection. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Lu B, Yin J, Liu C, Lin W. Lipid droplet polarity decreases during the pathology of muscle injury as revealed by a polarity sensitive sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120149. [PMID: 34252741 DOI: 10.1016/j.saa.2021.120149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Revealing the relationship between lipid droplets (LDs)polarity and disease is indispensable in clinicopathological diagnosis. So far, muscle injury is often ignored as it is not life-threatening as cardiovascular and cerebrovascular diseases, making the exploration of the internal relationship between muscle injury and LDs polarity a gray area. Herein, a fluorescent probe (CCB) with powerful polar-sensitive as well as precise LDs targeting was designed for visualizing the LDs polarity in the pathology of muscle injury. By means of the probe CCB, the identification of cancer cells and the monitoring of LDs polarity changes in dysfunctional cells were successfully realized. Furthermore, the penetration ability of CCB in tissues of mice was tested to verify the applicability of the probe in organisms. Importantly, by CCB, the relationship between muscle damage and LDs polarity was explored, revealing that muscle damage caused a significant decrease in LDs polarity accompanied by a significant increase in fluorescence. Most importantly, it is the first time to reveal the relationship between muscle damage and LDs polarity. Therefore, the probe CCB will be a powerful monitoring platform for diagnosing related diseases caused by abnormal LDs polarity.
Collapse
Affiliation(s)
- Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Cong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
9
|
Wang L, Zheng H, Zheng K, Yan J, Zhang N, Yu W. π-Expanded benzothiazole dyes with excited-state intramolecular proton-transfer process: Synthesis, photophysical properties, imaging in cells and zebrafish. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Wang L, Zheng K, Yu W, Yan J, Zhang N. A novel benzothiazole-based fluorescent probe for detection of SO2 derivatives and cysteine in aqueous solution and serum. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Yu W, Wang L, Wang L, Li Y, Zhang N, Zheng K. Quinoline based colorimetric and “turn-off” fluorescent chemosensor for phosgene sensing in solution and vapor phase. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Lin S, Dong J, Zhang B, Yuan Z, Lu C, Han P, Xu J, Jia L, Wang L. Synthesis of bifunctional fluorescent nanohybrids of carbon dots-copper nanoclusters via a facile method for Fe 3+ and Tb 3+ ratiometric detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3577-3584. [PMID: 34291249 DOI: 10.1039/d1ay00762a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a dual-emission ratiometric fluorescent probe of carbon dots-copper nanoclusters (CDs-Cu NCs) nanohybrids with bifunctional features was successfully assembled through mechanical mixing. The CDs were synthesized using ascorbic acid as a carbon source, and Cu NCs were prepared using d-penicillamine as the stabilizer and reducing agent. The as-prepared CDs-Cu NCs displayed two emission peaks (blue at 424 nm and red at 624 nm) when excited at 360 nm, and showed great stability. Interestingly, trace amount of Fe3+ could lead to the aggregation of Cu NCs, and induce a drastic static fluorescence quenching at 624 nm because of the electrostatic combination between them, while the fluorescence of the emission peak at 424 nm remained constant. Moreover, an attractive fluorescence enhancement phenomenon at 424 nm was observed when trace Tb3+ was added to the above system, which may due to the combination of fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) mechanisms. Thus, CDs-Cu NCs were applied for the ratiometric detection of Fe3+ and Tb3+ in aqueous solution, and the detection limit (3σ/slope) was 45 nM and 62 nM with the linear range from 0.01 to 40 μM and 0.1 to 50 μM, respectively. Furthermore, the developed sensor was successfully applied for the detection of Fe3+ and Tb3+ in real-water samples.
Collapse
Affiliation(s)
- Shumin Lin
- Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|