1
|
Banik S, Saikiran A, Permula P, Srivishnu KS, Sridhar B, Reddy BVS. Visible Light-Induced Metal-free Arylation of Coumarin-3-carboxylates with Arylboronic Acids. Chem Asian J 2024; 19:e202400042. [PMID: 38386270 DOI: 10.1002/asia.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The present work represents a novel methodology for the selective arylation of coumarin-3-carboxylates with arylboronic acids via a photochemical route, marking the first-ever attempt for the direct alkenyl C-H arylation using rose bengal as a photocatalyst, which is a readily available and cost-effective alternative to transition metal catalysis. The reaction proceeds smoothly in MeOH/H2O solvent media in the presence of radical initiator affording the arylated products in good yields (60-80 %). The reaction parameters such as visible light, radical initiator, oxidant, anhydrous solvent, and inert atmosphere play a crucial role for the success of this methodology. The substituents present on the substrate show a significant effect on the conversion. This study provides a valuable contribution to the field of organic synthesis offering a new and efficient approach to the arylation of coumarin-3-carboxylic acid esters with a broad substrate scope and high functional group tolerance. It is a versatile method and provides a direct access to biologically relevant 4-arylcoumarin-3-carboxylates.
Collapse
Affiliation(s)
- Swarnayu Banik
- Fluoro &Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aita Saikiran
- Fluoro &Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Prathyusha Permula
- Fluoro &Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K S Srivishnu
- Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - B V Subba Reddy
- Fluoro &Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| |
Collapse
|
2
|
Liu Y, Zhou T, Xuan L, Lin Y, Li F, Wang H, Lyu J, Yan Q, Zhou H, Wang W, Chen FE. Visible-Light-Driven C,N-Selective Heteroarylation of N-Fluoroalkyl Hydroxylamine Reagents with Quinoxalin-2(1 H)-ones. Org Lett 2023. [PMID: 37991496 DOI: 10.1021/acs.orglett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein, we disclose a direct and powerful strategy for the synthesis of highly valuable α-trifluoromethylamine and N-trifluoroethylamine derivatives from a visible-light-promoted C,N-selective heteroarylation of N-trifluoroethyl hydroxylamine reagents with quinoxalin-2(1H)-ones under ambient conditions. The chemoselectivity of the process (trifluoroalkylation or N-trifluoroethylamination) can easily be dictated and modulated by a selection of N-trifluoroethyl hydroxylamine substrates. The key to success is the protecting group on the N atom of hydroxylamine reagents, which can control the process of 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Remarkable features of this method include mild conditions, easy operation, high selectivity, and excellent functional group tolerability. More importantly, the trifluoroalkylated products can be readily derivatized into other interesting imidazo-fused heterocycles that would be of great potential for the exploitation of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fuqi Li
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jian Lyu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
More DA, Shirsath SR, Muthukrishnan M. Metal- and Photocatalyst-Free, Visible-Light-Initiated C3 α-Aminomethylation of Quinoxalin-2(1 H)-ones via Electron Donor-Acceptor Complexes. J Org Chem 2023; 88:13339-13350. [PMID: 37651188 DOI: 10.1021/acs.joc.3c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report a metal- and photocatalyst-free C3 α-aminomethylation of quinoxalin-2(1H)-ones with N-alkyl-N-methylanilines. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between quinoxalin-2(1H)-ones and N-alkyl-N-methylanilines. The present method provides a mild and environmentally friendly protocol that exhibits good atom economy and excellent functional group tolerance to obtain a library of biologically significant C3 α-aminomethylated quinoxalin-2(1H)-ones in good yields.
Collapse
Affiliation(s)
- Devidas A More
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Shirsath
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Muthukrishnan
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Liang Y, He Y, Jiang Z, Yang L, Xie L. Direct C−H Arylation of Quinoxalin‐2(
H
)‐ones with Arylhydrazine hydrochlorides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yue‐Pei Liang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Ya‐Nan He
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Ze‐Qun Jiang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Li‐Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| | - Long‐Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425100 China
| |
Collapse
|
5
|
Matsumura M, Nojima H, Kitamura Y, Murata Y, Yasuike S. Palladium-catalyzed C–H arylation of quinoxalin-2(1H)-ones with triarylantimony difluorides. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
7
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
8
|
Samanta RK, Meher P, Murarka S. Visible Light Photoredox-Catalyzed Direct C-H Arylation of Quinoxalin-2(1 H)-ones with Diaryliodonium Salts. J Org Chem 2022; 87:10947-10957. [PMID: 35925769 DOI: 10.1021/acs.joc.2c01234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox-catalyzed direct arylation of quinoxalin-2-(1H)-ones using diaryliodonium triflates as the convenient, stable, and cheap aryl source is described. A broad variety of quinoxalin-2-(1H)-ones are shown to react with structurally and electronically diverse diaryliodonium triflates, allowing efficient access to a wide variety of pharmaceutically important 3-arylquinoxalin-2-(1H)-ones. The presented method is attractive with regard to operational simplicity, mild conditions, broad scope, scalability, and high functional group tolerance.
Collapse
Affiliation(s)
- Raj K Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
9
|
Caldarelli M, Laze L, Piazza L, Caputo G, De Amici M, Papeo G. Use of acridinium-based photocatalyst in the Giese-type coupling of arylboronic acids with electron poor olefins. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Xie D, Tian RG, Zhang XT, Tian SK. Copper-catalyzed C-3 benzylation of quinoxalin-2(1 H)-ones with benzylsulfonyl hydrazides. Org Biomol Chem 2022; 20:4518-4521. [PMID: 35604002 DOI: 10.1039/d2ob00744d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented use of benzylsulfonyl hydrazides as benzylating agents has been demonstrated in the direct C-3 benzylation of quinoxalin-2(1H)-ones. A range of benzylsulfonyl hydrazides participated in the C-3 benzylation of quinoxalin-2(1H)-ones with CuCN as the catalyst and DTBP as the oxidant, delivering structurally diverse 3-benzylquinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Dong Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ren-Gui Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xue-Ting Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
11
|
Li X, Zang J, Wang S, Kang C, Xu J, Jiang G, Ji F. Metal & Surfactant-Free Oxidation of Quinoxalin-2(1H)-ones: Access to Quinoxaline-2,3-diones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Jiang J, Song S, Guo J, Zhou J, Li J. Mechanically induced transition metal free C(sp)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Photocatalyst-free visible light induced decarboxylative alkylation of quinoxalin-2(1H)-ones with carboxylic acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ye ZP, Liu F, Duan XY, Gao J, Guan JP, Xiao JA, Xiang HY, Chen K, Yang H. Visible Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1 H)-ones. J Org Chem 2021; 86:17173-17183. [PMID: 34743511 DOI: 10.1021/acs.joc.1c02285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones was developed in which 5-exo-trig cyclization and C-C bond formation were involved. This protocol was performed under mild conditions to facilely offer a variety of hybrid molecules bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons would expand the accessible chemical space for structurally complex heterocycles with potential biological activities.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xin-Yu Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
15
|
Peng S, Liu JJ, Yang L. Alkylation of quinoxalin-2(1 H)-ones using phosphonium ylides as alkylating reagents. Org Biomol Chem 2021; 19:9705-9710. [PMID: 34726225 DOI: 10.1039/d1ob01858b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient methodology for the construction of 3-alkylquinoxalinones through base promoted direct alkylation of quinoxalin-2(1H)-ones with phosphonium ylides as alkylating reagents under metal- and oxidant-free conditions was developed. Various 3-alkylquinoxalin-2(1H)-ones were easily obtained in good to excellent yields. Tentative mechanistic studies suggest that this reaction is likely to involve a nucleophilic addition-elimination process.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
16
|
Sun K, Xiao F, Yu B, He WM. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63850-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kiran, Rani P, Chahal S, Sindhu J, Kumar S, Varma RS, Singh R. Transition metal-free C-3 functionalization of quinoxalin-2(1 H)-ones: recent advances and sanguine future. NEW J CHEM 2021. [DOI: 10.1039/d1nj03445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A gradual shift from metal-catalyzed to metal-free methods is occurring, as the latter are more environmentally benign. This review discusses sustainable protocols for the construction of C–C, C–N, C–P, C–S, and C–O bonds via C–H functionalization of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| |
Collapse
|