1
|
Gao X, He H, Miao K, Zhang L, Ni SF, Li M, Guo W. Electrochemical Allylic C(sp 3)-H Isothiocyanation via [3,3]-Sigmatropic Rearrangement. Org Lett 2024; 26:4554-4559. [PMID: 38767297 DOI: 10.1021/acs.orglett.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The direct allylic C(sp3)-H functionalization provides a straightforward protocol for the synthesis of valuable molecules. We report herein the first chemo- and site-selective method for allylic C(sp3)-H isothiocyanation of various internal alkenes under mild electrochemical conditions. This method exhibits broad functional group tolerance and excellent selectivity and can be applied for late-stage isothiocyanation of bioactive molecules. Combined experimental and computational studies indicate that the reaction proceeds via an unexpected [3,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Xuezhuang Gao
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Hui He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063 Guangdong, P. R. China
| | - Kaili Miao
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Linbao Zhang
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063 Guangdong, P. R. China
| | - Ming Li
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Weisi Guo
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| |
Collapse
|
2
|
Maeda B, Murakami K. Recent advancement in the synthesis of isothiocyanates. Chem Commun (Camb) 2024; 60:2839-2864. [PMID: 38380440 DOI: 10.1039/d3cc06118c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Isothiocyanates exhibit various biological characteristics, including antimicrobial, anti-inflammatory, and anticancer properties. Their significance extends to synthetic chemistry, where they serve as valuable platforms for versatile transformations. Consequently, they have attracted the attention of biologists and chemists. This review summarizes recent advancements in the synthesis of isothiocyanates. Access to a variety of starting materials is important to prepare isothiocyanates with diverse structures. This review categorizes synthetic methods into three types based on the starting materials and functional groups: (i) type A, derived from primary amines; (ii) type B, derived from other nitrogen functional groups; and (iii) type C, derived from non-nitrogen groups. Recent trends in synthetic methods have revealed the prevalence of type-A reactions derived from primary amines. However, type B reactions have rarely been reported. Notably, over the past four years, there has been a notable increase in type C reactions, indicating a growing interest in non-nitrogen-derived isothiocyanates. Overall, this review not only outlines the advancements in the synthesis of isothiocyanates but also highlights trends in the methodology.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan.
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Li Y, Castañeda-Bagatella DM, Kakkad D, Ai Y, Chen H, Champagne PA. Synthetic and mechanistic study on the conjugate isothiocyanation of enones with trimethylsilyl isothiocyanate. Org Biomol Chem 2023. [PMID: 38009326 DOI: 10.1039/d3ob01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alkyl isothiocyanates (R-NCS) have pharmacological applications and provide a synthetic handle to various functional groups including thioureas. There are however few methods to access alkyl isothiocyanates through the creation of the C-N bond. We have developed a simple approach for the conjugate isothiocyanation of enones by trimethylsilyl isothiocyanate (TMSNCS), which proceeds through the 1,4-addition of the weak isothiocyanate nucleophile to activated enones in the absence of external promoters. This method avoids the direct use of highly toxic acids and bases, produces β-isothiocyanato carbonyl products in yields of 87-98% under mild conditions (less than 6 hours at 0 °C), and displays wide functional group tolerance. Density functional theory calculations highlighted competing cationic and anionic mechanisms, where the enone activation by the TMSNCS reagent is accelerated in protic solvents. The selective formation of the isothiocyanate vs. thiocyanate isomers is explained by the thermodynamically-controlled nature of the reaction in which only the conjugate isothiocyanation is exergonic.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Diana M Castañeda-Bagatella
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Dhyeyi Kakkad
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Yongling Ai
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Faramarzi Z, Kiyani H. Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
Zhang S, Li Y, Wang T, Li M, Wen L, Guo W. Electrochemical Benzylic C(sp 3)-H Isothiocyanation. Org Lett 2022; 24:1742-1746. [PMID: 35200030 DOI: 10.1021/acs.orglett.2c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective C(sp3)-H isothiocyanation represents a significant strategy for the synthesis of isothiocyanate derivatives. We report herein an electrochemical benzylic isothiocyanation in a highly chemo- and site-selective manner under external oxidant-free conditions. The high chemoselectivity is attributed to the facile in situ isomerization of benzylic thiocyanates to isothiocyanates. Notably, the method exhibits high functional group compatibility and is suitable for late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Shanxue Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yufeng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lirong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Abstract
Isothiocyanates (ITCs) are biologically active molecules found in several natural products and pharmaceutical ingredients. Moreover, due to their high and versatile reactivity, they are widely used as intermediates in organic synthesis. This review considers the best practices for the synthesis of ITCs using elemental sulfur, highlighting recent developments. First, we summarize the in situ generation of thiocarbonyl surrogates followed by their transformation in the presence of primary amines leading to ITCs. Second, carbenes and amines afford isocyanides, and the further reaction of this species with sulfur readily generates ITCs under thermal, catalytic or basic conditions. Additionally, we also reveal that in the catalyst-free reaction of isocyanides and sulfur, two—until this time overlooked and not investigated—different mechanistic pathways exist.
Collapse
|