1
|
Baidilov D, Elkin PK, Athe S, Rawal VH. Rapid Access to 2,2-Disubstituted Indolines via Dearomative Indolic-Claisen Rearrangement: Concise, Enantioselective Total Synthesis of (+)-Hinckdentine A. J Am Chem Soc 2023. [PMID: 37364288 DOI: 10.1021/jacs.3c03611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The construction of 2,2-disubstituted indolines has long presented a synthetic challenge without any general solutions. Herein, we report a robust protocol for the dearomative Meerwein-Eschenmoser-Claisen rearrangement of 3-indolyl alcohols that provides efficient access to 2-substituted and 2,2-disubstituted indolines. These versatile subunits are useful for natural product synthesis and medicinal chemistry. The title [3,3] sigmatropic rearrangement proceeds in generally excellent yield and transfers the C3-indolic alcohol chirality to the C2 position with high fidelity, thus providing a reliable method for the construction of enantioenriched 2,2-disubstituted indolines. The power of this methodology is demonstrated through the concise and strategically unique total synthesis of the marine natural product hinckdentine A, which features a dearomative Claisen rearrangement, a diastereocontrolled hydrogenation of the alkene product, a one-pot amide-to-oxime conversion using Vaska's complex, and a regioselective late-stage tribromination.
Collapse
Affiliation(s)
- Daler Baidilov
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Pavel K Elkin
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Sudhakar Athe
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Viresh H Rawal
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Zhao S, He Y, Gao F, Wei Y, Zhang J, Chen M, Gao Y, Zhang Y, Liu JY, Guo Z, Li Z, Nie S. Rapid access to C2-quaternary 3-methyleneindolines via base-mediated post-Ugi Conia-ene cyclization. Chem Commun (Camb) 2023; 59:3099-3102. [PMID: 36804590 DOI: 10.1039/d2cc06281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Highly efficient synthesis of diverse 2,2-disubstituted 3-methyleneindoline derivatives through a one-pot base-promoted post-Ugi 5-exo-dig "Conia-ene"-type cyclization has been disclosed. The mechanism study indicates that an intramolecular hydrogen bond may play a vital role in this process. The antiproliferative evaluation of cancer cell lines reveals that this protocol provides practical use in the green synthesis of bioactive compound libraries.
Collapse
Affiliation(s)
- Shuang Zhao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yi He
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Feiyu Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Wei
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jiawei Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Mengxiao Chen
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yunyun Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yuan Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zhenghua Li
- School of Science, Westlake University, Zhejiang 310030, China.
| | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Abe T, Yamashiro T, Shimizu K, Sawada D. Indole Editing Enabled by HFIP-Mediated Ring-Switch Reactions of 3-Amino-2-Hydroxyindolines. Chemistry 2022; 28:e202201113. [PMID: 35438809 DOI: 10.1002/chem.202201113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
This work reports the novel reactivity of hemiaminal as a precursor for indole editing at the multi-site. The HFIP-promoted indole editing of indoline hemiaminals affords 2-arylindoles through a ring-switch sequence. The key to success of this transformation is to use a cyclic hemiaminal as an α-amino aldehyde surrogate under transient tautomeric control. This transformation features mild reaction conditions and good yields with broad functional group tolerance. The utility of this transformation is presented through the one-pot protocol and the synthesis of isocryptolepine.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Kaho Shimizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| |
Collapse
|
5
|
Ruan Z, Wang M, Yang C, Zhu L, Su Z, Hong R. Total Synthesis of (+)-Hinckdentine A: Harnessing Noncovalent Interactions for Organocatalytic Bromination. JACS AU 2022; 2:793-800. [PMID: 35557764 PMCID: PMC9088303 DOI: 10.1021/jacsau.2c00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Hinckdentine A, a marine-sponge-derived tribrominated indole alkaloid bearing a unique indolo[1,2-c]quinazoline skeleton, was completed in 12 steps featuring the construction of the Nα-quaternary carbon center by asymmetric azo-ene cyclization. A novel organocatalyst was developed to promote high-yielding tribromination, which represents a challenging process encountered in previous syntheses. Density functional theory calculations scrutinized viable substrates and deciphered the origin of the enhancement of C8 electrophilic bromination with a bifunctional organocatalyst. Moreover, the application of organocatalyst-enabled bromination on various substrates was demonstrated to highlight future late functionalizations of biologically intriguing targets.
Collapse
Affiliation(s)
- Zhuwei Ruan
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 101419, China
| | - Min Wang
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chen Yang
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 101419, China
| | - Lili Zhu
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 101419, China
| | - Zhishan Su
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ran Hong
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 101419, China
| |
Collapse
|
6
|
Zhai L, Tang Y, Zhang Y, Huang SH, Zhu L, Hong R. A Bridge to Alkaloid Synthesis. CHEM REC 2021; 22:e202100197. [PMID: 34473401 DOI: 10.1002/tcr.202100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Indexed: 11/07/2022]
Abstract
The construction of a structurally rigid architecture with chiral complexity, necessary to enhance the interaction with binding sites of drug targets, has been adapted as an intriguing approach in drug development. In the past few years, we have been interested in the synthesis of biologically significant and bridged alkaloids via novel synthetic methods and strategies based on recognition of the privileged pattern. Therefore, nitroso-ene and aza-Wacker cyclizations were elevated for the first time to construct bridged alkaloids, such as hosieine A, kopsone, melinonine-E and strychnoxanthine. Mechanistic investigations, including computational calculations for nitroso-ene reaction and deuterated experiments for aza-Wacker reaction, enable us to gain more insights into the chemical reactivity and selectivity of specific functional groups in developing viable synthetic methods.
Collapse
Affiliation(s)
- Li Zhai
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ye Tang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Yan Zhang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Sha-Hua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Lili Zhu
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ran Hong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| |
Collapse
|