1
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Karak M, Cloonan CR, Baker BR, Cochrane RVK, Cochrane SA. Optimizations of lipid II synthesis: an essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target. Beilstein J Org Chem 2024; 20:220-227. [PMID: 38352069 PMCID: PMC10862138 DOI: 10.3762/bjoc.20.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Lipid II is an essential glycolipid found in bacteria. Accessing this valuable cell wall precursor is important both for studying cell wall synthesis and for studying/identifying novel antimicrobial compounds. Herein, we describe optimizations to the modular chemical synthesis of lipid II and unnatural analogues. In particular, the glycosylation step, a critical step in the formation of the central disaccharide unit (GlcNAc-MurNAc), was optimized. This was achieved by employing the use of glycosyl donors with diverse leaving groups. The key advantage of this approach lies in its adaptability, allowing for the generation of a wide array of analogues through the incorporation of alternative building blocks at different stages of synthesis.
Collapse
Affiliation(s)
- Milandip Karak
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Cian R Cloonan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Rachel V K Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
3
|
Braun C, Wingen LM, Menche D. Strategies and tactics for the synthesis of lipid I and II and shortened analogues: functional building blocks of bacterial cell wall biosynthesis. Nat Prod Rep 2023; 40:1718-1734. [PMID: 37492928 DOI: 10.1039/d3np00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Covering: the literature up to 2022This study discusses various synthetic strategies for the synthesis of lipid II, the pivotal bacterial cell wall precursor. In detail, it examines different solution phase approaches, reviews various solid phase sequences, and evaluates enzymatic ventures. The underlying rationale, scope, limitations, and perspectives of these strategies are discussed. The focus is on the tactics and strategies towards the authentic peptidoglycan compound, as well as analogues thereof with shortened side chains, which are increasingly recognized as more beneficial surrogates with more favorable physicochemical properties.
Collapse
Affiliation(s)
- Christina Braun
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Lukas Martin Wingen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| |
Collapse
|
4
|
Kusaka S, Yamamoto K, Shinohara M, Minato Y, Ichikawa S. Synthesis of capuramycin and its analogues via a Ferrier-type I reaction and their biological evaluation. Bioorg Med Chem 2022; 73:117011. [DOI: 10.1016/j.bmc.2022.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
|
5
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Kusaka S, Yamamoto K, Shinohara M, Minato Y, Ichikawa S. Design, synthesis and conformation-activity relationship analysis of LNA/BNA-type 5'-O-aminoribosyluridine as MraY inhibitors. Bioorg Med Chem 2022; 65:116744. [PMID: 35500521 DOI: 10.1016/j.bmc.2022.116744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
Abstract
It is important to understand and control the biologically active conformation in medicinal chemistry. Muraymycins and caprazamycins, which are strong inhibitors of MraY, are promising antibacterial agents with a novel mode of action. Focusing on a sugar puckering and a dihedral angle ϕ of the uridine moiety of these natural products, LNA/BNA-type 5'-O-aminoribosyluridine analogues, whose puckering of the ribose moiety are completely restricted to the N-type, were designed and synthesized as simplified MraY inhibitors. Their conformation-activity relationship was further investigated in details. The conformation-activity relationship analysis investigated in this study could be a general guideline for simplification and rational drug design of MraY inhibitory nucleoside natural products.
Collapse
Affiliation(s)
- Shintaro Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Motoko Shinohara
- Department of Microbiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Minato
- Department of Microbiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
7
|
Okamoto K, Ishikawa A, Okawa R, Yamamoto K, Sato T, Yokota SI, Chiba K, Ichikawa S. Design, synthesis and biological evaluation of simplified analogues of MraY inhibitory natural product with rigid scaffold. Bioorg Med Chem 2022; 55:116556. [PMID: 35016115 DOI: 10.1016/j.bmc.2021.116556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Muraymycins and caprazamycins are strong inhibitors of MraY, which is responsible for peptidoglycan biosynthesis. Although they are promising antibacterial agents with a novel mode of action, their chemical structures are rather complex. This study investigated the simplification of these natural products by structure-based drug design, synthesis, and biological evaluation. We developed a simplified rigid scaffold with an arylalkyne moiety, which shows sub-micromolar MraY inhibitory activity. The scaffold is suitable for further investigating the structure-activity relationship by virtue of our synthetic strategy, where the substituent of interest is installed in the last stage of synthesis. This scaffold shows the potential for further use in optimizing MraY inhibitory and antibacterial activities.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Aoi Ishikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ryotaro Okawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan; Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kazuhiro Chiba
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|