1
|
Bong SY, Song Z, Kaur K, Singh N, Park YI, Park J, Jang DO. Simple turn-on fluorescent probe for ultrafast and highly selective detection of hydrogen sulfide in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124925. [PMID: 39106719 DOI: 10.1016/j.saa.2024.124925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
5H-Benzimidazo[1,2-c]quinazoline-6-thione (BI-QT), was synthesized as a benzimidazole-based probe to detect H2S. BI-QT exhibits a fluorescent "turn-on" response in DMSO/H2O (9:1, HEPES 10 mM, pH 7.4) upon the addition of H2S. The BI-QT probe can determine micromolar (0-600 µM) H2S concentrations in aqueous systems, with a detection limit of 1.12 µM. Interestingly, BI-QT exhibited an ultrafast response to H2S, with maximum intensity achieved almost instantly when exposed to H2S. BI-QT is largely unaffected by pH and responds reliably over the wide 4-11 pH range, which highlights its applicability to various physiological scenarios. UV-vis, fluorescence, and 1H NMR spectroscopic analyses investigated the sensing mechanism. The practicality of the probe was demonstrated using water samples and living cells.
Collapse
Affiliation(s)
- So Yeon Bong
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea
| | - Zion Song
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea
| | - Kamalpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Doo Ok Jang
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
2
|
Javahershenas R, Han J, Kazemi M, Jervis PJ. Recent Advances in the Application of 2-Aminobenzothiazole to the Multicomponent Synthesis of Heterocycles. ChemistryOpen 2024; 13:e202400185. [PMID: 39246248 PMCID: PMC11564876 DOI: 10.1002/open.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Indexed: 09/10/2024] Open
Abstract
Heterocycles are a vital class of compounds in numerous fields, including drug discovery, agriculture, and materials science. Efficient methods for the synthesis of heterocycles remain critical for meeting the demands of these industries. Recent advances in multicomponent reactions (MCRs) utilizing 2-aminobenzothiazole (ABT) have shown promising results for the formation of heterocycles. The versatility of 2-aminobenzothiazole in this context has enabled the rapid and efficient construction of diverse heterocyclic structures. Various synthetic methodologies and reactions involving 2-aminobenzothiazole are discussed, highlighting its importance as a valuable building block in the synthesis of complex heterocycles. The potential applications of these heterocycles in drug discovery and material science are also explored. Overall, this review provides a comprehensive overview of the current state of research in the field and offers insights into the future directions of this promising area of study. We highlight the potential of ABT as a versatile and sustainable starting material in heterocyclic synthesis via MCRs, with significant implications for the chemical industry.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic ChemistryFaculty of ChemistryUrmia UniversityUrmiaIran
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjingForestry UniversityNanjing210037China
| | - Mosstafa Kazemi
- Young Researchers and Elite ClubTehran BranchIslamic Azad UniversityTehranIran
| | - Peter J. Jervis
- Center of ChemistryUniversity of MinhoCampus de Gualtar4710-057BragaPortugal
| |
Collapse
|
3
|
Xie YQ, Han MM, Zhang YM, Chen H, Zhang HB, Ren CY, Li L, Wu R, Yao H, Shi XN, Lin Q, Wei TB. A novel fluorescent probe with high sensitivity for sequential detection of CN− and Al3+ in highly aqueous medium and its applications in living cell bioimaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Liu Q, Liu Y, Xing Z, Huang Y, Ling L, Mo X. A novel dual-function probe for fluorescent turn-on recognition and differentiation of Al 3+ and Ga 3+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122076. [PMID: 36368269 DOI: 10.1016/j.saa.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel dual-function probe BMP based on benzothiazole was easily synthesized and characterized through common optical technique. In the system consisting of DMF/H2O (v/v, 2/3), probe BMP showed azure and blue-green to Al3+ and Ga3+, respectively. Besides, the binding ratios of BMP to Al3+ and Ga3+ were determined as 1:1, which confirmed by Job's plot. Furthermore, for Al3+ and Ga3+, the limit of detection (LOD) was determined to be 1.51 × 10-6 M and 4.28 × 10-6 M, respectively. Moreover, it was worth noting that BMP showed good performances in paper colorimetry, cell phone colorimetric identification and cell imaging.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yatong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China.
| | - Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Xinglin Mo
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| |
Collapse
|
5
|
Jung S, Moon S, Kim C. Detection of Hg
2+
with
NBD
‐based colorimetric chemosensor: Practical application to water samples and test strips. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sumin Jung
- Department of Fine Chem. and New and Renewable Energy Convergence SNUT (Seoul National Univ. of Sci. and Tech.) Seoul South Korea
| | - Sungjin Moon
- Department of Fine Chem. and New and Renewable Energy Convergence SNUT (Seoul National Univ. of Sci. and Tech.) Seoul South Korea
| | - Cheal Kim
- Department of Fine Chem. and New and Renewable Energy Convergence SNUT (Seoul National Univ. of Sci. and Tech.) Seoul South Korea
| |
Collapse
|
6
|
Choe D, Kim C. A benzothiadiazole-based colorimetric chemosensor for detecting Cu2+ and sequential H2S in practical samples. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Yang J, Zhang Y, Li L, Cao H, Qu W, Jia L. A quinolimide-based reversible fluorescent sensor for Cu2+ and S2− and its applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Singh G, Sushma, Priyanka, Khurana S, Singh G, Singh J, Angeles Esteban M, Espinosa-Ruíz C, González-Silvera D. Thiosemicarbazone-triazole bearing siloxy framework for the detection of Hg2+ and Cu2+ ions and their potent cytotoxic activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kim JK, Bong SY, Park R, Park J, Jang DO. An ESIPT-based fluorescent turn-on probe with isothiocyanate for detecting hydrogen sulfide in environmental and biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121333. [PMID: 35537263 DOI: 10.1016/j.saa.2022.121333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
A probe with an isothiocyanate group was synthesized and evaluated for its H2S sensing ability. Upon addition of H2S, the probe exhibited ratiometric properties during absorption with a red-shift. The probe exhibited fluorescent off-on responses towards H2S via the ESIPT process, due to the conversion of isocyanate into amine. UV-vis, fluorescence, and 1H NMR spectroscopic analyses were performed to investigate the sensing mechanism. The probe has a large Stokes shift, short response time, and low detection limit. It can be used to estimate H2S levels within the range of 0-36 nM. The practical applicability of the probe was demonstrated using water samples and living cells.
Collapse
Affiliation(s)
- Jae Kyong Kim
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea
| | - So Yeon Bong
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea
| | - Rackhyun Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Doo Ok Jang
- Department of Chemistry, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
10
|
Choe D, Kim C. A recyclable diacylhydrazone-based turn-on fluorescent chemosensor for detecting Al3+ and its practical applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kim G, Gil D, Lee JJ, Kim J, Kim KT, Kim C. An NBD-based fluorescent and colorimetric chemosensor for detecting S 2-: Practical application to zebrafish and water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121207. [PMID: 35395461 DOI: 10.1016/j.saa.2022.121207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A novel 7-nitro-1,2,3-benzoxadiazole (NBD)-based chemosensor BOP ((5-bromopyridin-2-yl)(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)piperazin-1-yl)methanone) was synthesized. BOP could detect S2- through fluorescent quenching and colorimetric change. The detection limit was calculated to be 10.9 µM through fluorescence titration. The reaction mechanism of BOP towards S2- was estimated to be thiolysis of NBD amine, producing the cleavage products, NBD-S- and BP ((5-bromopyridin-2-yl)(piperazin-1-yl)methanone). The thiolysis was demonstrated by 1H NMR titrations, ESI-mass analysis and theoretical calculations. Importantly, BOP was able to successfully monitor S2- in zebrafish and water samples. Additionally, test strips coated with BOP were applied to the in-the-field measurements of S2-.
Collapse
Affiliation(s)
- Gyeongjin Kim
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Dongkyun Gil
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Jae Jun Lee
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Jiwon Kim
- Department of Environ. Engineering, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environ. Engineering, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea.
| | - Cheal Kim
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea.
| |
Collapse
|
12
|
A solvent-dependent dual chemosensor for detecting Zn2+ and Hg2+ based on thiophene and thiourea functional groups by fluorescence turn-on. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Shainyan BA, Zhilitskaya LV, Yarosh NO. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082598. [PMID: 35458794 PMCID: PMC9027766 DOI: 10.3390/molecules27082598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Numerous benzothiazole derivatives are used in organic synthesis, in various industrial and consumer products, and in drugs, with a wide spectrum of biological activity. As the properties of the benzothiazole moiety are strongly affected by the nature and position of substitutions, in this review, covering the literature from 2016, we focus on C-2-substituted benzothiazoles, including the methods of their synthesis, structural modification, reaction mechanisms, and possible pharmacological activity. The synthetic approaches to these heterocycles include both traditional multistep reactions and one-pot atom economy processes using green chemistry principles and easily available reagents. Special attention is paid to the methods of the thiazole ring closure and chemical modification by the introduction of pharmacophore groups.
Collapse
|
14
|
Suh B, Kim H, Jang S, Kim KT, Kim C. A benzothiazole-based fluorescent and colorimetric probe for the detection of ClO - and its application to zebrafish and water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120827. [PMID: 34995853 DOI: 10.1016/j.saa.2021.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A benzothiazole-based fluorescent and colorimetric chemosensor BZD ((E)-2-(benzo[d]thiazol-2-yl)-5-((4-(diethylamino)-2-hydroxybenzylidene)amino)phenol) was applied for detecting ClO-. BZD showed fluorescence quenching and color variation for ClO- via oxidative reaction between ClO- and the imine bond. It could effectively detect ClO- over various competitive analytes. Detection limit for ClO- was calculated to be 1.74 μM by fluorescent method and 16.44 μM by colorimetric one, respectively. Additionally, BZD could be utilized for sensing ClO- in zebrafish, real water sample and paper strip. The photophysical characteristics and sensing mechanism of BZD to ClO- were studied by fluorescent and UV-visible spectroscopy, NMR titration, and ESI-mass spectrometry.
Collapse
Affiliation(s)
- Boeon Suh
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Hyeongjin Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea
| | - Soogyeong Jang
- Department of Environ. Engineering, (SNUT) Seoul National Univ. of Sci. and Tech., Seoul 01166, South Korea
| | - Ki-Tae Kim
- Department of Environ. Engineering, (SNUT) Seoul National Univ. of Sci. and Tech., Seoul 01166, South Korea.
| | - Cheal Kim
- Department of Fine Chem., SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, South Korea.
| |
Collapse
|
15
|
Mishra S, Kumar Singh A. Real time sensor for Fe 3+, Al 3+, Cu 2+ & PPi through quadruple mechanistic pathways using a novel dipodal quinoline-based molecular probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120832. [PMID: 35065423 DOI: 10.1016/j.saa.2021.120832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A quinoline-based small molecular probe, H2L was designed, synthesized and characterized by different spectroscopic methods. It was utilized as a multi-responsive probe for the detection of Fe3+, Al3+, Cu2+ and PPi. It showed very selective instant turn-on fluorimetric response towards Fe3+and Al3+ with a detection limit in nanomolar range. Solutions of H2L containing Fe3+ or Al3+ could sequentially sense PPi by a turn-off mechanism. Also, H2L could determine the presence of Cu2+ very selectively among a series of other metal ions by a sharp change in colour. Detection of Cu2+ through colorimetry was further investigated by systematic UV-Vis studies and the potential of H2L to act as a potential colorimetric sensor for Cu2+ was suitably established. Filter-paper strip experiments were conducted to demonstrate the practical utility of the proposed sensor. Potential applications of H2L as a sensor for pH in the acidic range has also been explored.
Collapse
Affiliation(s)
- Sagarika Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India.
| |
Collapse
|
16
|
Gil D, kim C. A selective chromone‐based colorimetric chemosensor for detecting Cu
2+
in near‐perfect aqueous solution and test kit. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongkyun Gil
- Renewable Energy Convergence and Department of Fine Chem SNUT (Seoul National Univ. of Sci. and Tech.) Seoul South Korea
| | - Cheal kim
- Renewable Energy Convergence and Department of Fine Chem SNUT (Seoul National Univ. of Sci. and Tech.) Seoul South Korea
| |
Collapse
|
17
|
Kim H, Suh B, Kim C. A pyridine‐dicarbohydrazide‐based chemosensor for detecting Al
3+
by fluorescence turn‐on. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hyeongjin Kim
- Department of Fine Chemistry Seoul National University of Science and Technology Seoul South Korea
- Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul South Korea
| | - Boeon Suh
- Department of Fine Chemistry Seoul National University of Science and Technology Seoul South Korea
- Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul South Korea
| | - Cheal Kim
- Department of Fine Chemistry Seoul National University of Science and Technology Seoul South Korea
- Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul South Korea
| |
Collapse
|
18
|
Choe D, Kim C. An Acylhydrazone-Based Fluorescent Sensor for Sequential Recognition of Al 3+ and H 2PO 4. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6392. [PMID: 34771920 PMCID: PMC8585233 DOI: 10.3390/ma14216392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
A novel acylhydrazone-based fluorescent sensor NATB was designed and synthesized for consecutive sensing of Al3+ and H2PO4-. NATB displayed fluorometric sensing to Al3+ and could sequentially detect H2PO4- by fluorescence quenching. The limits of detection for Al3+ and H2PO4- were determined to be 0.83 and 1.7 μM, respectively. The binding ratios of NATB to Al3+ and NATB-Al3+ to H2PO4- were found to be 1:1. The sequential recognition of Al3+ and H2PO4- by NATB could be repeated consecutively. In addition, the practicality of NATB was confirmed with the application of test strips. The sensing mechanisms of Al3+ and H2PO4- by NATB were investigated through fluorescence and UV-Visible spectroscopy, Job plot, ESI-MS, 1H NMR titration, and DFT calculations.
Collapse
Affiliation(s)
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 136-742, Korea;
| |
Collapse
|
19
|
Singh R, Sindhu J, Devi M, Kumar A, Kumar R, Hussain K, Kumar P. Solid‐Supported Materials‐Based Synthesis of 2‐Substituted Benzothiazoles: Recent Developments and Sanguine Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202101368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 INDIA
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science and Technology Hisar 125001 INDIA
| | - Ramesh Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Khalid Hussain
- Department of Applied Sciences and Humanities Mewat Engineering College Nuh 122107 INDIA
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| |
Collapse
|