1
|
Zhang Y, Li Y, Yin P, Han W. Synthesis by adding CTAB and characterization of Ag@CuO@rGO nanocomposite with a novel core-shell crystal sugar structure and its application in supercapacitors. RSC Adv 2023; 13:19803-19812. [PMID: 37404319 PMCID: PMC10315995 DOI: 10.1039/d3ra03025c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, we successfully synthesized Ag@CuO@rGO (rGO wrapped around Ag/CuO) nanocomposites using AgNO3, Cu(NO)32, and NaOH as raw materials and particularly treated CTAB as a template by chemical precipitation, hydrothermal synthesis, and subsequent high-temperature calcination processes. In addition, transmission electron microscopy (TEM) images revealed that the prepared products appeared to have a mixed structure. The results indicated that the best choice was CuO wrapped around Ag nanoparticles to form a core-shell crystal structure, and the crystal particles were arranged similarly to form an icing sugar block structure and were tightly wrapped by rGO. Moreover, the electrochemical test results demonstrated that Ag@CuO@rGO composite electrode material exhibited high pseudocapacitance performance; the material had a high specific capacity of 1453 F g-1 at a current density of 2.5 mA cm-2, and the charging and discharging cycles remained constant up to 2000 times, indicating that the introduction of Ag improved the cycling stability and reversibility of the CuO@rGO electrode material and increased its specific capacitance, leading to the increase in the specific capacitance of supercapacitors. Therefore, the above results strongly support the application of Ag@CuO@rGO in optotronic devices.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power Zhengzhou 450045 China
| | - Yong Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power Zhengzhou 450045 China
| | - Pengchong Yin
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power Zhengzhou 450045 China
| | - Weizhong Han
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power Zhengzhou 450045 China
- School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
2
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 760] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
4
|
Rios-Reyes CH, Mendoza-Huizar LH, Rivera M. Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions. J Solid State Electrochem 2009. [DOI: 10.1007/s10008-009-0816-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Cobos-Murcia J, Galicia L, Rojas-Hernández A, Ramírez-Silva M, Álvarez-Bustamante R, Romero-Romo M, Rosquete-Pina G, Palomar-Pardavé M. Electrochemical polymerisation of 5-amino-1,10-phenanthroline onto different substrates. Experimental and theoretical study. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|