1
|
Moe MM, Tsai M, Liu J. Effects of Intra-Base Pair Proton Transfer on Dissociation and Singlet Oxygenation of 9-Methyl-8-Oxoguanine-1-Methyl-Cytosine Base-Pair Radical Cations. Chemphyschem 2023; 24:e202300511. [PMID: 37738022 DOI: 10.1002/cphc.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine-cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1 O2 ) damage. Herein, reaction dynamics of a prototype Watson-Crick base pair [9MOG ⋅ 1MC]⋅+ , consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+ ) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC← → ${{\stackrel{ {\rightarrow} } { {\leftarrow} } } }$ [9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1 O2 , revealing the two most probable pathways, C5-O2 addition and HN7 -abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1 O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1 O2 as [9MOG - H]⋅>9MOG⋅+ >[9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ ≥9MOG⋅+ ⋅ 1MC.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
2
|
Moe MM, Benny J, Liu J. Collision-induced dissociation of homodimeric and heterodimeric radical cations of 9-methylguanine and 9-methyl-8-oxoguanine: correlation between intra-base pair proton transfer originating from the N1-H at a Watson-Crick edge and non-statistical dissociation. Phys Chem Chem Phys 2022; 24:9263-9276. [PMID: 35403654 DOI: 10.1039/d2cp00312k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been shown previously in protonated, deprotonated and ionized guanine-cytosine base pairs that intra-base pair proton transfer from the N1-H at the Watson-Crick edge of guanine to the complementary nucleobase prompts non-statistical dissociation of the base-pair system, and the dissociation of a proton-transferred base-pair structure is kinetically more favored than that of the starting, conventional base-pair structure. However, the fundamental chemistry underlying this anomalous and intriguing kinetics has not been completely revealed, which warrants the examination of more base-pair systems in different structural contexts in order to derive a generalized base-pair structure-kinetics correlation. The purpose of the present work is to expand the investigation to the non-canonical homodimeric and heterodimeric radical cations of 9-methylguanine (9MG) and 9-methyl-8-oxoguanine (9MOG), i.e., [9MG·9MG]˙+, [9MOG·9MG]˙+ and [9MOG·9MOG]˙+. Experimentally, collision-induced dissociation tandem mass spectrometry coupled with an electrospray ionization (ESI) source was used for the formation of base-pair radical cations, followed by detection of dissociation product ions and cross sections in the collisions with Xe gas under single ion-molecule collision conditions and as a function of the center-of-mass collision energy. Computationally, density functional theory and coupled cluster theory were used to calculate and identify probable base-pair structures and intra-base pair proton transfer and hydrogen transfer reactions, followed by kinetics modeling to explore the properties of dissociation transition states and kinetic factors. The significance of this work is twofold: it provides insight into base-pair opening kinetics in three biologically-important, non-canonical systems upon oxidative and ionization damage; and it links non-statistical dissociation to intra-base pair proton-transfer originating from the N1-H at the Watson-Crick edge of 8-oxoguanine, enhancing understanding towards the base-pair fragmentation assisted by proton transfer.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
3
|
Moe MM, Tsai M, Liu J. Singlet Oxygen Oxidation of the Radical Cations of 8-Oxo-2'-deoxyguanosine and Its 9-Methyl Analogue: Dynamics, Potential Energy Surface, and Products Mediated by C5-O 2 -Addition. Chempluschem 2021; 86:1243-1254. [PMID: 34268890 DOI: 10.1002/cplu.202100238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Indexed: 01/24/2023]
Abstract
8-Oxo-2'-deoxyguanosine (OG) is the most common DNA lesion. Notably, OG becomes more susceptible to oxidative damage than the undamaged nucleoside, forming mutagenic products in vivo. Herein the reactions of singlet O2 with the radical cations of 8-oxo-2'-deoxyguanosine (OG.+ ) and 9-methyl-8-oxoguanine (9MOG.+ ) were investigated using ion-molecule scattering mass spectrometry, from which barrierless, exothermic O2 -addition products were detected for both reaction systems. Corroborated by static reaction potential energy surface constructed using multi-reference CASPT2 theory and molecular dynamics simulated in the presence of the reactants' kinetic and internal energies, the C5-terminal O2 -addition was pinpointed as the most probable reaction pathway. By elucidating the reaction mechanism, kinetics and dynamics, and reaction products and energetics, this work constitutes the first report unraveling the synergetic damage of OG by ionizing radiation and singlet O2 .
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY, 11101, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| |
Collapse
|
4
|
Bangalore DM, Heil HS, Mehringer CF, Hirsch L, Hemmen K, Heinze KG, Tessmer I. Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases. Sci Rep 2020; 10:15484. [PMID: 32968112 PMCID: PMC7511397 DOI: 10.1038/s41598-020-72102-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Base excision repair is the dominant DNA repair pathway of chemical modifications such as deamination, oxidation, or alkylation of DNA bases, which endanger genome integrity due to their high mutagenic potential. Detection and excision of these base lesions is achieved by DNA glycosylases. To investigate the remarkably high efficiency in target site search and recognition by these enzymes, we applied single molecule atomic force microscopy (AFM) imaging to a range of glycosylases with structurally different target lesions. Using a novel, automated, unbiased, high-throughput analysis approach, we were able to resolve subtly different conformational states of these glycosylases during DNA lesion search. Our results lend support to a model of enhanced lesion search efficiency through initial lesion detection based on altered mechanical properties at lesions. Furthermore, its enhanced sensitivity and easy applicability also to other systems recommend our novel analysis tool for investigations of diverse, fundamental biological interactions.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Christian F Mehringer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Lisa Hirsch
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
| |
Collapse
|
5
|
de Faria RC, Vila-Nova LG, Bitar M, Resende BC, Arantes LS, Rebelato AB, Azevedo VAC, Franco GR, Machado CR, Santos LLD, de Oliveira Lopes D. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. INFECTION GENETICS AND EVOLUTION 2016; 44:318-329. [PMID: 27456281 DOI: 10.1016/j.meegid.2016.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 01/30/2023]
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of mutations and the repair of oxidative DNA lesions.
Collapse
Affiliation(s)
- Rafael Cançado de Faria
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Liliane Gonçalves Vila-Nova
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Mainá Bitar
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Bruno Carvalho Resende
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Larissa Sousa Arantes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Arnaldo Basso Rebelato
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Vasco Ariston Carvalho Azevedo
- Laboratory of Cell and Molecular Genetics, Department of General Biology, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Glória Regina Franco
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Carlos Renato Machado
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Luciana Lara Dos Santos
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Débora de Oliveira Lopes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
6
|
Jana K, Ganguly B. In silico studies with substituted adenines to achieve a remarkable stability of mispairs with thymine nucleobase. NEW J CHEM 2016. [DOI: 10.1039/c5nj02311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modified adenine and thymine mispair achieves a remarkable stability, which can presumably help the DNA lesions to be less cytotoxic.
Collapse
Affiliation(s)
- Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR – Central Salt and Marine Chemicals Research Institute
- Bhavnagar – 364002
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
7
|
Anusiewicz I, Świerszcz I, Skurski P, Simons J. Mechanism for Repair of Thymine Dimers by Photoexcitation of Proximal 8-Oxo-7,8-dihydroguanine. J Phys Chem A 2012; 117:1240-53. [DOI: 10.1021/jp305561u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iwona Anusiewicz
- Department of Chemistry and
Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, United States
- Department of Chemistry, Univeristy of Gdańsk, 80-915 Gdańsk,
Poland
| | - Iwona Świerszcz
- Department of Chemistry, Univeristy of Gdańsk, 80-915 Gdańsk,
Poland
| | - Piotr Skurski
- Department of Chemistry and
Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, United States
- Department of Chemistry, Univeristy of Gdańsk, 80-915 Gdańsk,
Poland
| | - Jack Simons
- Department of Chemistry and
Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Nguyen KV, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J Am Chem Soc 2011; 133:14586-9. [PMID: 21877686 DOI: 10.1021/ja2072252] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox-active enzyme cofactors derived from ribonucleotides have been called "fossils of the RNA world," suggesting that early catalysts employed modified nucleobases to facilitate redox chemistry in primitive metabolism. Here, we show that the common oxidative damage product 8-oxo-7,8-dihydroguanine (OG), when incorporated into a DNA or RNA strand in proximity to a cyclobutane pyrimidine dimer, can mimic the function of a flavin in photorepair. The OG nucleotide acts catalytically in a mechanism consistent with that of photolyase in which the photoexcited state of the purine donates an electron to a pyrimidine dimer to initiate bond cleavage; subsequent back electron transfer regenerates OG. This unusual example of one form of DNA damage, oxidation, functioning to repair another, photodimerization, may provide insight into the origins of prebiotic redox processes.
Collapse
Affiliation(s)
- Khiem Van Nguyen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | |
Collapse
|
9
|
Ebrahimi A, Habibi-khorassani M, Haghani A. Effect of protonation on individual hydrogen bonds in the 8-oxoguanine-cytosine base pair: NMR, NBO and AIM analyses. Mol Phys 2011. [DOI: 10.1080/00268976.2010.521781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Reynisson J. Molecular mechanism of base pairing infidelity during DNA duplication upon one-electron oxidation. World J Clin Oncol 2010; 1:12-7. [PMID: 21603305 PMCID: PMC3095454 DOI: 10.5306/wjco.v1.i1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023] Open
Abstract
The guanine radical cation (G•+) is formed by one-electron oxidation from its parent guanine (G). G•+ is rapidly deprotonated in the aqueous phase resulting in the formation of the neutral guanine radical [G(-H)•]. The loss of proton occurs at the N1 nitrogen, which is involved in the classical Watson-Crick base pairing with cytosine (C). Employing the density functional theory (DFT), it has been observed that a new shifted base pairing configuration is formed between G(-H)• and C constituting only two hydrogen bonds after deprotonation occurs. Using the DFT method, G(-H)• was paired with thymine (T), adenine (A) and G revealing substantial binding energies comparable to those of classical G-C and A-T base pairs. Hence, G(-H)• does not display any particular specificity for C compared to the other bases. Taking into account the long lifetime of the G(-H)• radical in the DNA helix (5 s) and the rapid duplication rate of DNA during mitosis/meiosis (5-500 bases per s), G(-H)• can pair promiscuously leading to errors in the duplication process. This scenario constitutes a new mechanism which explains how one-electron oxidation of the DNA double helix can lead to mutations.
Collapse
Affiliation(s)
- Jóhannes Reynisson
- Jóhannes Reynisson, Department of Chemistry and Auckland Bioengineering Institute, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Steenken S, Reynisson J. DFT calculations on the deprotonation site of the one-electron oxidised guanine-cytosine base pair. Phys Chem Chem Phys 2010; 12:9088-93. [PMID: 20532316 DOI: 10.1039/c002528c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As calculated by the density functional theory (DFT), the acidity of cytosine's exocyclic amine group (C-N(4)H2) in the base pair G-C is considerably increased upon its one-electron oxidation. The proton affinity (PA) of the amine moiety is lowered by ionisation of G-C (which yields G(*+)-C) from -348.1 to -269.1 kcal mol(-1). The PA is further decreased by 7.6 kcal mol(-1) as a result of the ensuing proton transfer from G(*+) to C to yield the spin-charge separated base pair G(-H)(*)-C(+H)(+). Under these conditions and taking the hydration energy of H(+) into account, the overall proton transfer from the C-N(4)H2 group to the aqueous phase in the major groove is exothermic by -2.4 kcal mol(-1). This proton transfer to water from the initially present DNA radical cation constitutes separation of charge from spin and thus reduces positive charge transfer in double stranded DNA.
Collapse
Affiliation(s)
- Steen Steenken
- Department of Chemistry & Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | |
Collapse
|
12
|
Shinde SS, Maroz A, Hay MP, Anderson RF. One-electron reduction potential of the neutral guanyl radical in the GC base pair of duplex DNA. J Am Chem Soc 2009; 131:5203-7. [PMID: 19320486 DOI: 10.1021/ja8087339] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The one-electron oxidation of guanine in the GC base pair of DNA has been investigated using pulse radiolysis combined with DFT calculations. Reaction of benzotriazinyl radicals with DNA results in the formation of the neutral guanyl radical and redox equilibria. The one-electron reduction potential, E(7), of the neutral guanyl radical in the GC base pair is determined for the first time as 1.22 +/- 0.02 V, from both absorption and kinetic data.
Collapse
Affiliation(s)
- Sujata S Shinde
- Department of Chemistry and Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
13
|
Agnihotri N, Mishra PC. Mutagenic Product Formation Due to Reaction of Guanine Radical Cation with Nitrogen Dioxide. J Phys Chem B 2009; 113:3129-38. [DOI: 10.1021/jp805942y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Neha Agnihotri
- Department of Physics, Banaras Hindu University, Varanasi - 221 005, India
| | - P. C. Mishra
- Department of Physics, Banaras Hindu University, Varanasi - 221 005, India
| |
Collapse
|
14
|
Czyznikowska Z. How does modification of adenine by hydroxyl radical influence the stability and the nature of stacking interactions in adenine-cytosine complex? J Mol Model 2009; 15:615-22. [PMID: 19198902 DOI: 10.1007/s00894-008-0447-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
This study reports on ab initio calculations of adenine-cytosine complexes in two different context alignments appearing in B-DNA. The influence of adenine modification by hydroxyl radical on the stability of the complexes is also discussed. The analysis was performed on over 40 crystallographic structures for each of the sequence contexts. In most cases, modification of adenine by hydroxyl radical leads to less negative intermolecular interaction energies. The issue of the influence of alteration of structural base step parameters on the stability of modified and unmodified adenine-cytosine complexes is also addressed. Analysis of the dependence of intermolecular interaction energy on base step parameters reveals that for twist and shift modification of adenine by hydroxyl radical leads to quite different interaction energy profiles in comparison with unmodified complexes. In order to elucidate the physical origins of this phenomenon, i.e. to analyze how the modification of adenine by hydroxyl radical is reflected in the change of intermolecular interaction energy components, a variational-perturbational decomposition scheme was applied at the MP2/aug-cc-pVDZ level of theory.
Collapse
Affiliation(s)
- Zaneta Czyznikowska
- Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13-15, 85-067 Bydgoszcz, Poland.
| |
Collapse
|
15
|
Jayanth N, Ramachandran S, Puranik M. Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. J Phys Chem A 2009; 113:1459-71. [DOI: 10.1021/jp8071519] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Namrata Jayanth
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Srinivas Ramachandran
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mrinalini Puranik
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|