1
|
Bhattarai S, Sutradhar D, Huyskens TZ, Chandra AK. Nature and Strength of the π‐Hole Chalcogen Bonded Complexes between Substituted Pyridines and SO
3
Molecule. ChemistrySelect 2021. [DOI: 10.1002/slct.202101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sumitra Bhattarai
- Department of Chemistry North-Eastern Hill University Shillong 793022 India
| | | | | | - Asit K. Chandra
- Department of Chemistry North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
2
|
Yoon SG, Park BJ, Jin H, Lee WH, Han J, Cho YH, Yook H, Han JW, Kim YS. Probing an Interfacial Ionic Pairing-Induced Molecular Dipole Effect in Ionovoltaic System. SMALL METHODS 2021; 5:e2100323. [PMID: 34927990 DOI: 10.1002/smtd.202100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Indexed: 06/14/2023]
Abstract
A surficial molecular dipole effect depending on ion-molecular interactions has been crucial issues regarding to an interfacial potential, which can modulate solid electronic and electrochemical systems. Their properties near the interfacial region can be dictated by specific interactions between surface and adsorbates, but understandings of the corresponding details remain at interesting issues. Here, intuitive observations of an ionic pair formation-induced interfacial potential shifts are presented with an ionovoltaic system, and corresponding output signal variations are analyzed in terms of the surficial dipole changes on self-assembled monolayer. With aiding of photoelectron spectroscopies and density function theory simulation, the ionic pair formation-induced potential shifts are revealed to strongly rely on a paired molecular structure and a binding affinity of the paired ionic moieties. Chemical contributions to the binding event are interrogated in terms of polarizability in each ionic group and consistent with chaotropic/kosmotropic character of the ionic groups. Based on these findings, the ionovoltaic output changes are theoretically correlated with an adsorption isotherm reflecting the molecular dipole effect, thereby demonstrating as an efficient interfacial molecular probing method under electrolyte interfacing conditions.
Collapse
Affiliation(s)
- Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byoung Joon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical & Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|
3
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|