1
|
Wei M, Zuo J, Tian G, Hua W. Simulating temperature and tautomeric effects for vibrationally resolved XPS of biomolecules: Combining time-dependent and time-independent approaches to fingerprint carbonyl groups. J Chem Phys 2024; 161:104303. [PMID: 39248239 DOI: 10.1063/5.0224090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Carbonyl groups (C=O) play crucial roles in the photophysics and photochemistry of biological systems. O1s x-ray photoelectron spectroscopy allows for targeted investigation of the C=O group, and the coupling between C=O vibration and O1s ionization is reflected in the fine structures. To elucidate its characteristic vibronic features, systematic Franck-Condon simulations were conducted for six common biomolecules, including three purines (xanthine, caffeine, and hypoxanthine) and three pyrimidines (thymine, 5F-uracil, and uracil). The complexity of simulation for these biomolecules lies in accounting for temperature effects and potential tautomeric variations. We combined the time-dependent and time-independent methods to efficiently account for the temperature effects and to provide explicit assignments, respectively. For hypoxanthine, the tautomeric effect was considered by incorporating the Boltzmann population ratios of two tautomers. The simulations demonstrated good agreement with experimental spectra, enabling differentiation of two types of carbonyl oxygens with subtle local structural differences, positioned between two nitrogens (O1) or between one carbon and one nitrogen (O2). The analysis provided insights into the coupling between C=O vibration and O1s ionization, consistently showing an elongation of the C=O bond length (by 0.08-0.09 Å) upon O1s ionization.
Collapse
Affiliation(s)
- Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Junxiang Zuo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
2
|
Zhang J, Zhang J, Zhang X, Huang X, Shi J, Sobhy R, Khalifa I, Zou X. Ammonia-Responsive Colorimetric Film of Phytochemical Formulation (Alizarin) Grafted onto ZIF-8 Carrier with Poly(vinyl alcohol) and Sodium Alginate for Beef Freshness Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11706-11715. [PMID: 38728528 DOI: 10.1021/acs.jafc.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Food Technology Department, Faculty of Agriculture, Benha University, Toukh13736, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
3
|
Mandal S, Erimban S, Banerjee S, Daschakraborty S, Das P. Elucidating the relationship between red fluorescence and structural dynamics of carbon dots dispersed in different solvents. Phys Chem Chem Phys 2023; 25:23645-23657. [PMID: 37609834 DOI: 10.1039/d3cp02498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The mechanism of intrinsic fluorescence of carbon dots (CDs), the latest nanomaterial from the carbon family, was supposedly deciphered through multiple theories. However, the much sought-after persistent red emission of CDs as a foreseeable consequence of experiments remains elusive prompting the question of whether tuning of the red emission of CDs is a predictable outcome or a serendipitous coincidence. Herein, we tried to decode the same by exploring Alizarin Red S (ARS)-based red emitting CDs in different solvents with wisely chosen analytical tools. The findings are aptly supported by molecular dynamics studies through an experimental intuition-driven model-building approach. Parallel interception of the CDs with powder X-ray diffraction (pXRD) and photophysical spectroscopic studies revealed an important relationship between the solvent and CDs. Tautomerism, a well-known phenomenon with chemical entities, was found to be operative for CDs that greatly influence the Stokes shift and ultimately the fluorescence outcome. Most importantly, pXRD studies established the turbostratism of the CDs where the well-ordered graphitic structure of CDs gets disrupted with solvent molecules. The extent of such disruption is a function of solvent and CD composition that plays a formidable role in obtaining red fluorescence. Thus, for the first time, we demonstrate that the red emission of CDs is related to its structural integrity and if taken care of could be sustained, a tremendously desirable outcome for relevant applications.
Collapse
Affiliation(s)
- Saptarshi Mandal
- Department of Biomedical Engineering, University of Kentucky, Lexington, 40536, USA
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Subhrajeet Banerjee
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | | | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| |
Collapse
|
4
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Balakrishnan NK, Ostheller ME, Aldeghi N, Schmitz C, Groten R, Seide G. Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives. Polymers (Basel) 2022; 14:polym14152989. [PMID: 35893953 PMCID: PMC9330496 DOI: 10.3390/polym14152989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fibers with diameters in the lower micrometer range have unique properties suitable for applications in the textile and biomedical industries. Such fibers are usually produced by solution electrospinning, but this process is environmentally harmful because it requires the use of toxic solvents. Melt electrospinning is a sustainable alternative but the high viscosity and low electrical conductivity of molten polymers produce thicker fibers. Here, we used multifunctional biobased dyes as additives to improve the spinnability of polylactic acid (PLA), improving the spinnability by reducing the electrical resistance of the melt, and incorporating antibacterial activity against Staphylococcus aureus. Spinning trials using our 600-nozzle pilot-scale melt-electrospinning device showed that the addition of dyes produced narrower fibers in the resulting fiber web, with a minimum diameter of ~9 µm for the fiber containing 3% (w/w) of curcumin. The reduction in diameter was low at lower throughputs but more significant at higher throughputs, where the diameter reduced from 46 µm to approximately 23 µm. Although all three dyes showed antibacterial activity, only the PLA melt containing 5% (w/w) curcumin retained this property in the fiber web. Our results provide the basis for the development of environmentally friendly melt-electrospinning processes for the pilot-scale manufacturing of microfibers.
Collapse
Affiliation(s)
- Naveen Kumar Balakrishnan
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
- Correspondence:
| | - Maike-Elisa Ostheller
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Niccolo Aldeghi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Moenchengladbach, Webschulstrasse 31, 41065 Moenchengladbach, Germany;
| | - Gunnar Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| |
Collapse
|
6
|
Tissier RC, Rigaud B, Thureau P, Huix-Rotllant M, Jaber M, Ferré N. Stressing the differences in alizarin and purpurin dyes through UV-visible light absorption and 1H-NMR spectroscopies. Phys Chem Chem Phys 2022; 24:19452-19462. [DOI: 10.1039/d2cp00520d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three anthraquinone-based chromophores (9,10-anthraquinone, alizarin, purpurin) are compared from the point of view of their experimental and computed NMR and UV-visible light absorption spectra. Using an hybrid (explicit/implicit) solvent model,...
Collapse
|
7
|
Ground-state intramolecular proton transfer and observation of high energy tautomer in 1,4-Dihydroxyanthraquinone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ruppert H, Greb L. Bis(alizarinato)silane: In Silico Design and Synthesis of a Powerful Chromogenic Lewis Acid as a Dual-Gated Fluoride Ion Probe. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heiko Ruppert
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. NANOMATERIALS 2019; 9:nano9040517. [PMID: 30987003 PMCID: PMC6523326 DOI: 10.3390/nano9040517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
Abstract
In this study, titanium dioxide powder obtained by the sol-gel method and TiO₂ nanotubes, were prepared. In order to increase the TiO₂ photoactivity, the powders and nanotubes obtained were modified by dye sensitization treatment during the oxide synthesis. The sensitizers applied were Quinizarin (Q) and Zinc protoporphyrin (P). The materials synthesized were extensively characterized and it was found that the dye sensitization treatment leads to modify the optical and surface properties of Titania. It was also found that the effectiveness of the dye-sensitized catalysts in the phenol and methyl orange (MO) photodegradation strongly depends on the dye sensitizer employed. Thus, the highest degradation rate for MO was obtained over the conventional Q-TiO₂ photocatalyst. In the case of the nanotubes series, the most effective photocatalyst in the MO degradation was based on TiO₂-nanotubes sensitized with the dye protoporfirin (ZnP). Selected catalysts were also tested in the phenol and MO photodegradation under visible light and it was observed that these samples are also active under this radiation.
Collapse
|
10
|
Turner MAP, Horbury MD, Stavros VG, Hine NDM. Determination of Secondary Species in Solution through Pump-Selective Transient Absorption Spectroscopy and Explicit-Solvent TDDFT. J Phys Chem A 2019; 123:873-880. [DOI: 10.1021/acs.jpca.8b11013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. A. P. Turner
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| | - M. D. Horbury
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - V. G. Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - N. D. M. Hine
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
11
|
Caram J, Banera M, Suárez JM, Mirífico M. ELECTROCHEMICAL BEHAVIOUR OF ANTHRAQUINONE DYES IN NON AQUEOUS SOLVENT SOLUTION. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Blachecki A, Mech-Piskorz J, Gajewska M, Mech K, Pilarczyk K, Szaciłowski K. Organotitania-Based Nanostructures as a Suitable Platform for the Implementation of Binary, Ternary, and Fuzzy Logic Systems. Chemphyschem 2017; 18:1798-1810. [PMID: 28449282 DOI: 10.1002/cphc.201700292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/25/2017] [Indexed: 12/31/2022]
Abstract
Titanium dioxide nanocomposites were synthesized in hierarchical architectures through the use of a 1,4-dihydroxyanthraquinone photosensitizer. In the first step, the dye was either incorporated into the TiO2 core or adsorbed on its surface. In the subsequent phase, both structures were covered with an outer layer of titanium dioxide. The structure, morphology, aggregation, spectroscopic, and electrochemical properties of the synthesized TiO2 -based materials are presented with emphasis on the photosensitization and the photocurrent switching phenomena, which are also discussed within the context of the optical logic gates implementation and fuzzy logic systems operation. We present three different interpretations of the photocurrent action spectra yielding binary, ternary, or fuzzy logic circuits.
Collapse
Affiliation(s)
- Andrzej Blachecki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry, Polish Academy of Sciences ul., Kasprzaka 44/52, 01-224, Warszawa, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Krzysztof Mech
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Kacper Pilarczyk
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland.,Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
13
|
The control and optimization of the curing process of epoxy coatings: a case of poly(glycidoxy siloxane) resins. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Coatings from poly(glycidoxy siloxane) resins were developed and their mechanical properties examined. Three different resins with varying numbers of methyl siloxane and glycidyl siloxane units were tested. Crystallinity was found to be a very important indicator of the mechanical properties of coatings, as the parameters such as cupping and hardness were linearly dependent on the degree of crystallinity of coatings. The method involving the spectrophotometric determination of unbounded amine curing agent was successfully applied as a way of optimizing the curing process both for expected mechanical properties and for ecological aspect. It was found that the resin with 50 methyl siloxane and 25 glycidyl siloxane units was the most appropriate for technological use because of the preferred mechanical properties and stability of technological parameters. Interestingly, this type of resin was characterized by the lowest degree of crystallinity. The curing conditions leading to the optimal product corresponded to 30 min of curing at 120°C or 20 min at 140°C. Under such conditions, the amount of released unbounded amine was the lowest. It was also found that poly(glycidoxy) siloxane resins may be ecologically valuable since the release of amine from this type of resins is smaller than that from a typical epoxy resin.
Collapse
|
14
|
Laurent AD, Adamo C, Jacquemin D. Dye chemistry with time-dependent density functional theory. Phys Chem Chem Phys 2015; 16:14334-56. [PMID: 24548975 DOI: 10.1039/c3cp55336a] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this perspective, we present an overview of the determination of excited-state properties of "real-life" dyes, and notably of their optical absorption and emission spectra, performed during the last decade with time-dependent density functional theory (TD-DFT). We discuss the results obtained with both vertical and adiabatic (vibronic) approximations, choosing relevant examples for several series of dyes. These examples include reproducing absorption wavelengths of numerous families of coloured molecules, understanding the specific band shape of amino-anthraquinones, optimising the properties of dyes used in solar cells, mimicking the fluorescence wavelengths of fluorescent brighteners and BODIPY dyes, studying optically active biomolecules and photo-induced proton transfer, as well as improving the properties of photochromes.
Collapse
Affiliation(s)
- Adèle D Laurent
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, Cedex 3, France.
| | | | | |
Collapse
|
15
|
Amat A, Miliani C, Romani A, Fantacci S. DFT/TDDFT investigation on the UV-vis absorption and fluorescence properties of alizarin dye. Phys Chem Chem Phys 2015; 17:6374-82. [DOI: 10.1039/c4cp04728a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Potential energy curve for the ESIPT. Top inset: vibrationally resolved emission spectra computed for both tautomers. Bottom insets: main vibrational modes.
Collapse
Affiliation(s)
- Anna Amat
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO)
- CNR-ISTM
- Perugia
- Italy
| | - Costanza Miliani
- CNR-ISTM
- Perugia
- Italy
- Centro di Eccellenza SMAArt (Scientific Methodologies applied to Archaeology and Art)
- Dipartimento di Chimica
| | - Aldo Romani
- Centro di Eccellenza SMAArt (Scientific Methodologies applied to Archaeology and Art)
- Dipartimento di Chimica
- Biologia e Biotecnologie
- Università di Perugia
- Italy
| | - Simona Fantacci
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO)
- CNR-ISTM
- Perugia
- Italy
| |
Collapse
|
16
|
Fehér PP, Purgel M, Joó F. Performance of exchange–correlation functionals on describing ground state geometries and excitations of Alizarin Red S: Effect of complexation and degree of deprotonation. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Carta L, Biczysko M, Bloino J, Licari D, Barone V. Environmental and complexation effects on the structures and spectroscopic signatures of organic pigments relevant to cultural heritage: the case of alizarin and alizarin-Mg(II)/Al(III) complexes. Phys Chem Chem Phys 2014; 16:2897-911. [PMID: 24424261 PMCID: PMC4627506 DOI: 10.1039/c3cp50499a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An integrated computational approach allowed an unbiased analysis of optical and structural properties of alizarin-based pigments, which can be directly compared with experimental results. Madder lake pigments have been modeled by Mg(II)- and Al(III)-coordinated alizarin taking into account solvation and metal-linkage effects, responsible for colour modifications. Moreover, different environmental conditions have been analyzed for free alizarin, showing in all cases semi-quantitative agreement with experimental spectroscopic data (UV-VIS). Our results point out the ability of in silico approaches to unravel the subtle interplay of stereo-electronic, dynamic, and environmental effects in tuning the physico-chemical properties of pigments relevant to cultural heritage.
Collapse
Affiliation(s)
- Luciano Carta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
18
|
Jeliński T, Cysewski P, Makarewicz E. Application of alizarin colorimetric measurements for quantification of amine extraction by model food simulants from epoxy polymer. SPRINGERPLUS 2013; 2:593. [PMID: 24294544 PMCID: PMC3833905 DOI: 10.1186/2193-1801-2-593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/23/2013] [Indexed: 12/01/2022]
Abstract
A simple and straightforward method has been proposed for quantification of residual amine in cured epoxy resin. Non-bounded triethylenetetramine was extracted from epoxy polymer and determined via spectrophotometry using alizarin chromophore. Four solvents commonly used as food simulants, namely water, 95% ethanol, 10% ethanol and 3% acetic acid were examined. Released amine induces changes in the absorption spectrum of alizarin, by decreasing the intensity of the maximum at 430 nm band and mutually increasing the 527 nm band. These changes were proportional to the amounts of amine concentration in samples. The statistical significance of obtained calibration curves was validated. Among studied solvents, the highest amine release was observed for water solution and 3% acetic acid, that is approximately 7% w/w. The maximal amount of residual amine extracted with 95% ethanol was about 1.25%, while for 10% ethanol this amount was 2%. The effect of aging of the samples and exposure to artificial sunlight were also examined. The proposed method has been proven to be fast, low cost and directly applicable for analysis of typical epoxy resins.
Collapse
Affiliation(s)
- Tomasz Jeliński
- />Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| | - Piotr Cysewski
- />Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
- />Division of Materials Chemistry and Protective Coatings University of Technology and Life Sciences, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Edwin Makarewicz
- />Division of Materials Chemistry and Protective Coatings University of Technology and Life Sciences, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
19
|
Fain VY, Zaitsev BE, Ryabov MA. Tautomeric composition and tautomeric transformation sequence of 1,4-bis(alkylamino)anthraquinones. RUSS J GEN CHEM+ 2013. [DOI: 10.1134/s1070363213030146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Fain VY, Zaitsev BE, Ryabov MA. Study of tautomeric transformations of 1,4,5,8-tetraaminoanthraquinone by electronic spectroscopy. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2013. [DOI: 10.1134/s0036024413040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cysewski P, Jeliński T. Accuracy of color prediction of anthraquinone dyes in methanol solution estimated from first principle quantum chemistry computations. J Mol Model 2012; 19:4089-97. [PMID: 23250806 DOI: 10.1007/s00894-012-1717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland,
| | | |
Collapse
|
22
|
Fain VY, Zaitsev BE, Ryabov MA. 1,10-quinoid structure and prototropic amino-imine tautomerism of α-aminoanthraquinones. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212090186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Tehrani-Bagha A, Singh R, Holmberg K. Solubilization of two organic dyes by cationic ester-containing gemini surfactants. J Colloid Interface Sci 2012; 376:112-8. [DOI: 10.1016/j.jcis.2012.02.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/29/2022]
|
24
|
Fain VY, Zaitsev BE, Ryabov MA. Protonation of 1,4,5-tri- and 1,4,5,8-tetrahydroxyanthraquinones in sulfuric acid: Multistep reaction involving tautomers and conformers. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Cysewski P, Jeliński T, Przybyłek M, Shyichuk A. Color prediction from first principle quantum chemistry computations: a case of alizarin dissolved in methanol. NEW J CHEM 2012. [DOI: 10.1039/c2nj40327g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Studies of the tautomeric forms of alizarin in the ground state by electronic spectroscopy combined with quantum chemical calculations. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Al(III) complexation by alizarin studied by electronic spectroscopy and quantum chemical calculations. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Jacquemin D, Peltier C, Ciofini I. Visible spectrum of naphthazarin investigated through Time-Dependent Density Functional Theory. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.04.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. J Chem Theory Comput 2010; 6:2071-85. [DOI: 10.1021/ct100119e] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denis Jacquemin
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Eric A. Perpète
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Ilaria Ciofini
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Carlo Adamo
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Rosendo Valero
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Yan Zhao
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| | - Donald G. Truhlar
- Unité de Chimie Physique Théorique et Structurale (UCPTS), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Ecole Nationale Supérieure de Chimie de Paris, Laboratoire Electrochimie et Chimie Analytique, UMR CNRS-ENSCP no. 7575, 11, rue Pierre et Marie Curie, F-75321 Paris Cedex 05, France, Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Commercial Print Engine Lab, HP Laboratories, Hewlett
| |
Collapse
|
30
|
Vandurm P, Cauvin C, Wouters J, Perpète EA, Jacquemin D. Electronic transitions of neutral and anionic quinolinone HIV-1 integrase inhibitor: Joint theory/experiment investigation. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|