1
|
Tripathi D, Pyla M, Dutta AK, Matsika S. Impact of solvation on the electronic resonances in uracil. Phys Chem Chem Phys 2025; 27:3588-3601. [PMID: 39903129 DOI: 10.1039/d4cp04333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Interactions of low-energy electrons with the DNA and RNA nucleobases are known to form metastable states, known as electronic resonances. In this work, we study electron attachment to solvated uracil, an RNA nucleobase, using the orbital stabilization method at the Equation of Motion-Coupled Cluster for Electron Affinities with Singles and Doubles (EOM-EA-CCSD) level of theory with the Effective Fragment Potential (EFP) solvation method. We benchmarked the approach using multireference methods, as well as by comparing EFP and full quantum calculations. The impact of solvation on the first one particle (1p) shape resonance, formed by electron attachment to the π* LUMO orbital, as well as the first two particle one hole (2p1h) resonance, formed by electron attachment to neutral uracil's π-π* excited state, was investigated. We used molecular dynamics simulations for solvent configurations and applied charge stabilization technique-based biased sampling to procure configurations adequate to cover the entire range of the electron attachment energy distribution. The electron attachment energy in solution is found to be distributed over a wide range of energies, between 4.6 eV to 6.8 eV for the 2p1h resonance, and between -0.1 eV to 2 eV for the 1p resonance. The solvent effects were similar for the two resonances, indicating that the exact electron density of the state is not as important as the solvent configurations. Multireference calculations extended the findings showing that solvation effects are similar for the lowest four resonances, further indicating that the specific solute electron density is not as important, but rather the water configurations play the most important role in solvation effects. Finally, by comparing bulk solvation to clusters of uracil with a few water molecules around it, we find that the impact of microsolvation is very different from that of bulk solvation.
Collapse
|
2
|
Clarke CJ, Burrow EM, Verlet JRR. The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy. Phys Chem Chem Phys 2024; 26:20037-20045. [PMID: 39007196 DOI: 10.1039/d4cp02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The unoccupied π* orbitals of the nucleobases are considered to play important roles in low-energy electron attachment to DNA, inducing damage. While the lowest anionic valence state is vertically unbound in all neutral nucleobases, it remains unclear even for the simplest nucleobase, uracil (U), whether its valence anion (U-) is adiabatically bound, which has important implications on the efficacy of damage processes. Using anion photoelectron spectroscopy, we demonstrate that the valence electron affinity (EAV) of U can be accurately measured within weakly solvating clusters, U-(Ar)n and U-(N2)n. Through extrapolation to the isolated U limit, we show that EAV = -2 ± 18 meV. We discuss these findings in the context of electron attachment to U and its reorganization energy, and more generally establish guidance for the determination of molecular electron affinities from the photoelectron spectroscopy of anion clusters.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - E Michi Burrow
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
3
|
Anstöter CS, Matsika S. Understanding the Interplay between the Nonvalence and Valence States of the Uracil Anion upon Monohydration. J Phys Chem A 2020; 124:9237-9243. [DOI: 10.1021/acs.jpca.0c07407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Mukherjee M, Tripathi D, Dutta AK. Water mediated electron attachment to nucleobases: Surface-bound vs bulk solvated electrons. J Chem Phys 2020; 153:044305. [DOI: 10.1063/5.0010509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Madhubani Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
6
|
Kunin A, Li WL, Neumark DM. Dynamics of electron attachment and photodissociation in iodide-uracil-water clusters via time-resolved photoelectron imaging. J Chem Phys 2018; 149:084301. [PMID: 30193511 DOI: 10.1063/1.5040673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The dynamics of low energy electron attachment to monohydrated uracil are investigated using time-resolved photoelectron imaging to excite and probe iodide-uracil-water (I-·U·H2O) clusters. Upon photoexcitation of I-·U·H2O at 4.38 eV, near the measured cluster vertical detachment energy of 4.40 eV ± 0.05 eV, formation of both the dipole bound (DB) anion and valence bound (VB) anion of I-·U·H2O is observed and characterized using a probe photon energy of 1.58 eV. The measured binding energies for both anions are larger than those of the non-hydrated iodide-uracil (I-·U) counterparts, indicating that the presence of water stabilizes the transient negative ions. The VB anion exhibits a somewhat delayed 400 fs rise when compared to I-·U, suggesting that partial conversion of the DB anion to form the VB anion at early times is promoted by the water molecule. At a higher probe photon energy, 3.14 eV, I- re-formation is measured to be the major photodissociation channel. This product exhibits a bi-exponential rise; it is likely that the fast component arises from DB anion decay by internal conversion to the anion ground state followed by dissociation to I-, and the slow component arises from internal conversion of the VB anion.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Li WL, Kunin A, Matthews E, Yoshikawa N, Dessent CEH, Neumark DM. Photodissociation dynamics of the iodide-uracil (I(-)U) complex. J Chem Phys 2017; 145:044319. [PMID: 27475373 DOI: 10.1063/1.4959858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I(-) ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I(-) and weak [U-H](-) ion signal upon photoexcitation. The action spectra show two bands for I(-) and [U-H](-) production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I(-) production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I(-) exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I(-)U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π(∗) excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I(-) production suggest that this channel results from internal conversion to the I(-) ⋅ U ground state followed by evaporation of I(-). This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations.
Collapse
Affiliation(s)
- Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Edward Matthews
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Naruo Yoshikawa
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Caroline E H Dessent
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Stephansen AB, King SB, Yokoi Y, Minoshima Y, Li WL, Kunin A, Takayanagi T, Neumark DM. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. J Chem Phys 2016; 143:104308. [PMID: 26374036 DOI: 10.1063/1.4929995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.
Collapse
Affiliation(s)
- Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Yusuke Minoshima
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
|
10
|
Ilyina MG, Khamitov EM, Ivanov SP, Mustafin AG, Khursan SL. Anions of uracils: N1 or N3? That is the question. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kunin A, Li WL, Neumark DM. Time-resolved photoelectron imaging of iodide–nitromethane (I−·CH3NO2) photodissociation dynamics. Phys Chem Chem Phys 2016; 18:33226-33232. [DOI: 10.1039/c6cp06646a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissociation to reform iodide was found to be non-statistical and is predicted to be limited by intramolecular vibrational energy redistribution.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Wei-Li Li
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Daniel M. Neumark
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
12
|
King SB, Yandell MA, Stephansen AB, Neumark DM. Time-resolved radiation chemistry: dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes. J Chem Phys 2015; 141:224310. [PMID: 25494752 DOI: 10.1063/1.4903197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Electron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I(-)U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.00 eV, 4.07 eV, 4.14 eV, 4.21 eV, and 4.66 eV. At the four lowest excitation energies, which lie near the vertical detachment energy of the I(-)U complex (4.11 eV), signatures of both the dipole bound (DB) as well as the valence bound (VB) anion of uracil were observed. In contrast, only the VB anion was observed at 4.66 eV, in agreement with previous experiments in this higher energy range. The early-time dynamics of both states were highly excitation energy dependent. The rise time of the DB anion signal was ∼250 fs at 4.00 eV and 4.07 eV, ∼120 fs at 4.14 eV and cross-correlation limited at 4.21 eV. The VB anion rise time also changed with excitation energy, ranging from 200 to 300 fs for excitation energies 4.00-4.21 eV, to a cross-correlation limited time at 4.66 eV. The results suggest that the DB state acts as a "doorway" state to the VB anion at 4.00-4.21 eV, while direct attachment to the VB anion occurs at 4.66 eV.
Collapse
Affiliation(s)
- Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Margaret A Yandell
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Sugioka Y, Yoshikawa T, Takayanagi T. Theoretical Study of Excess Electron Attachment Dynamics to the Guanine–Cytosine Base Pair: Electronic Structure Calculations and Ring–Polymer Molecular Dynamics Simulations. J Phys Chem A 2013; 117:11403-10. [DOI: 10.1021/jp4067058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuji Sugioka
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Takehiro Yoshikawa
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
14
|
Streit L, Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Valence and diffuse-bound anions of noble-gas complexes with uracil. J Chem Phys 2012. [DOI: 10.1063/1.4766735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Maeyama T, Yoshida K, Fujii A. Size-Dependent Metamorphosis of Electron Binding Motif in Cluster Anions of Primary Amide Molecules. J Phys Chem A 2012; 116:3771-80. [DOI: 10.1021/jp204621x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshihiko Maeyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Keiji Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Melicherčík M, Pašteka LF, Neogrády P, Urban M. Electron Affinities of Uracil: Microsolvation Effects and Polarizable Continuum Model. J Phys Chem A 2012; 116:2343-51. [DOI: 10.1021/jp211994k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miroslav Melicherčík
- Department of Physical and Theoretical
Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
| | - Lukáš F. Pašteka
- Department of Physical and Theoretical
Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
| | - Pavel Neogrády
- Department of Physical and Theoretical
Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
| | - Miroslav Urban
- Department of Physical and Theoretical
Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
- Slovak University of Technology
in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917
24 Trnava, Slovakia
| |
Collapse
|
17
|
Dedíková P, Neogrády P, Urban M. Electron Affinities of Small Uracil−Water Complexes: A Comparison of Benchmark CCSD(T) Calculations with DFT. J Phys Chem A 2011; 115:2350-8. [DOI: 10.1021/jp111104j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavlína Dedíková
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
| | - Pavel Neogrády
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
| | - Miroslav Urban
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia
- Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Slovak University of Technology in Bratislava, Bottova 25, SK-917 24 Trnava, Slovakia
| |
Collapse
|