1
|
Michalczyk M, Kizior B, Zierkiewicz W, Scheiner S. Factors contributing to halogen bond strength and stretch or contraction of internal covalent bond. Phys Chem Chem Phys 2023; 25:2907-2915. [PMID: 36636920 DOI: 10.1039/d2cp05598h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The halogen bond formed by a series of Lewis acids TF3X (T = C, Si, Ge, Sn, Pb; X = Cl, Br, I) with NH3 is studied by quantum chemical calculations. The interaction energy is closely mimicked by the depth of the σ-hole on the X atom as well as the full electrostatic energy. There is a first trend by which the hole is deepened if the T atom to which X is attached becomes more electron-withdrawing: C > Si > Ge > Sn > Pb. On the other hand, larger more polarizable T atoms are better able to transmit the electron-withdrawing power of the F substituents. The combination of these two opposing factors leaves PbF3X forming the strongest XBs, followed by CF3X, with SiF3X engaging in the weakest bonds. The charge transfer from the NH3 lone pair into the σ*(TX) antibonding orbital tends to elongate the covalent TX bond, and this force is largest for the heavier X and T atoms. On the other hand, the contraction of this bond deepens the σ-hole at the X atom, which would enhance both the electrostatic component and the full interaction energy. This bond-shortening effect is greatest for the lighter X atoms. The combination of these two opposing forces leaves the T-X bond contracting for X = Cl and Br, but lengthening for I.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Beata Kizior
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA.
| |
Collapse
|
2
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
3
|
Theoretical investigation on the improper hydrogen bond in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH 3, H 2O, and H 2S) complexes. J Mol Model 2021; 27:292. [PMID: 34546413 DOI: 10.1007/s00894-021-04904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The nature of H-bonds in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH3, H2O, and H2S) complexes was studied. For this aim, the structure of isolated κ-carrabiose was optimized using three global hybrids functional: B3LYP, PBE0, and M06-2X combined with 6-311G** basis set. Subsequently, the κ-carrabiose in the presence of HF, HCl, HBr, NH3, H2O, and H2S was optimized using the CBS-4 M method. NBO analyses were then carried out at the MP2/6-311G** level of theory. A particular interest was focused on C(18)-H(34)⋯Y bond. The results reveal that the C(18)-H(34)⋯Y bond is an improper H-bond since a significant contraction of C(18)-H(34) was observed during the complexation leading to a significant blueshifted stretching frequency. The NBO analyses have shown that the formation of the improper H-bonds C(18)-H(34)⋯Y (Y = F, Cl, Br, N, O, and S) is principally due to the increase of the s-character of the hybrid orbital in carbon atom (rehybridization) in κ-carrabiose⋯Y complexes. Regarding the polarization, it was proved that more the H-bond center (carbon in C(18)-H(34)⋯Y) becomes less positive, the hydrogen more positive, and Y more negative; more the contraction of the C(18)-H(34) bond is important. It was also confirmed for intramolecular H-bonds in κ-carrabiose⋯Y complexes that the rehybridization is responsible for H-bonds nature either proper or improper.
Collapse
|
4
|
Afonin AV, Pavlov DV, Vashchenko AV. Case study of 2-vinyloxypyridine: Quantitative assessment of the intramolecular C H⋯N hydrogen bond energy and its contribution to the one-bond 13C1H coupling constant. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Krivdin LB. Theoretical calculations of carbon-hydrogen spin-spin coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:17-73. [PMID: 30538048 DOI: 10.1016/j.pnmrs.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Structural applications of theoretical calculations of carbon-hydrogen spin-spin coupling constants are reviewed covering papers published mainly during the last 10-15 years with a special emphasis on the most notable studies of hybridization, substitution and stereoelectronic effects together with the investigation of hydrogen bonding and intermolecular interactions. The wide scope of different applications of calculated carbon-hydrogen couplings in the structural elucidation of particular classes of organic and bioorganic molecules is reviewed, concentrating mainly on saturated, unsaturated, aromatic and heteroaromatic compounds and their functional derivatives, as well as on natural compounds and carbohydrates. The review is dedicated to Professor Emeritus Michael Barfield in view of his invaluable pioneering contribution to this field.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
6
|
Afonin AV, Vashchenko AV, Sigalov MV. Estimating the energy of intramolecular hydrogen bonds from 1H NMR and QTAIM calculations. Org Biomol Chem 2018; 14:11199-11211. [PMID: 27841888 DOI: 10.1039/c6ob01604a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The values of the downfield chemical shift of the bridge hydrogen atom were estimated for a series of compounds containing an intramolecular hydrogen bond O-HO, O-HN, O-HHal, N-HO, N-HN, C-HO, C-HN and C-HHal. Based on these values, the empirical estimation of the hydrogen bond energy was obtained by using known relationships. For the compounds containing an intramolecular hydrogen bond, the DFT B3LYP/6-311++G(d,p) method was used both for geometry optimization and for QTAIM calculations of the topological parameters (electron density ρBCP and the density of potential energy V in the critical point of the hydrogen bond). The calculated geometric and topological parameters of hydrogen bonds were also used to evaluate the energy of the hydrogen bond based on the equations from the literature. Comparison of calibrating energies from the 1H NMR data with the energies predicted by calculations showed that the most reliable are the linear dependence on the topological ρBCP and V parameters. However, the correct prediction of the hydrogen bond energy is determined by proper fitting of the linear regression coefficients. To obtain them, new linear relationships were found between the calculated ρBCP and V parameters and the hydrogen bond energies obtained from empirical 1H NMR data. These relationships allow the comparison of the energies of different types of hydrogen bonds for various molecules and biological ensembles.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia.
| | - Alexander V Vashchenko
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia.
| | - Mark V Sigalov
- Department of Chemistry, Ben-Gurion University of the Negev, 84104, Beer Sheva, Israel.
| |
Collapse
|
7
|
Vashchenko AV, Afonin AV. A study of intramolecular hydrogen bonds C-H⋯X (X = N, O) within the theory of the electron localization function. J STRUCT CHEM+ 2015. [DOI: 10.1134/s002247661406002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Togashi K, Sagara Y, Yasuda T, Adachi C. Molecular Design of High-molecular-orientation Electron-transport Materials and Application to Organic Light-emitting Diodes. CHEM LETT 2013. [DOI: 10.1246/cl.130150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazunori Togashi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University
- Hodogaya Chemical Co
| | - Yuta Sagara
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Takuma Yasuda
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University
- Department of Applied Chemistry, Kyushu University
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University
- Department of Applied Chemistry, Kyushu University
| |
Collapse
|
9
|
Sigalov MV, Doronina EP, Sidorkin VF. CAr–H···O Hydrogen Bonds in Substituted Isobenzofuranone Derivatives: Geometric, Topological, and NMR Characterization. J Phys Chem A 2012; 116:7718-25. [DOI: 10.1021/jp304009g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mark V. Sigalov
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva,
Israel
| | - Evgeniya P. Doronina
- Irkutsk Institute of Chemistry, Siberian Division of RAS, Favorsky st.
1, 664033 Irkutsk, Russia
| | - Valery F. Sidorkin
- Irkutsk Institute of Chemistry, Siberian Division of RAS, Favorsky st.
1, 664033 Irkutsk, Russia
| |
Collapse
|
10
|
Afonin AV, Pavlov DV, Ushakov IA, Keiko NA. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:502-510. [PMID: 22615146 DOI: 10.1002/mrc.3828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/02/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St 1, 664033, Irkutsk, Russia
| | | | | | | |
Collapse
|
11
|
Selvam L, Chen F, Wang F. Solvent effects on blue shifted improper hydrogen bond of C–H⋯O in deoxycytidine isomers. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chen F, Selvam L, Wang F. Blue shifted intramolecular C−H···O improper hydrogen bonds in conformers of zidovudine. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|