1
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
2
|
Reproductive and Behavioral Evaluation of a New Immunocastration Dog Vaccine. Animals (Basel) 2020; 10:ani10020226. [PMID: 32023851 PMCID: PMC7070807 DOI: 10.3390/ani10020226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Population control of free-roaming dogs is a topic of great interest worldwide. Immunocastration (immune blockade of GnRH-I, the hormone that commands reproductive ability) has emerged as a complementary alternative to surgical castration. In this work, the effectiveness of an immunocastration vaccine for dogs was evaluated, as were the reproductive and behavioral characteristics of vaccinated animals. Two consecutive trials were carried out for this purpose. A first trial was conducted under experimental conditions, observing an immune response against the vaccine over a nine-month period that was associated with changes in the testicular function of the animals (decrease in testosterone and alteration of the characteristics of the ejaculate). The second trial was conducted on dogs who had owners, and vaccinated animals showed an immune response against the five-month vaccine and a decrease in unwanted behaviors associated with the presence of sex hormones. While more studies are needed, this vaccine is emerging as a promising tool for the reproductive and behavioral management of male dogs. Abstract Canine immunocastration development has been of interest for many years as a complementary strategy to surgical castration. The purpose of this paper was to verify the effect of a recombinant vaccine for dog immunocastration. Two tests were done, one under controlled conditions and a second under field conditions. Animals were injected with 1 mL of 500 µg GnRXG/Q recombinant protein; 500 µg of low molecular weight chitosan as adjuvant; 1 mL NaCl 0.9% q.s. In the first trial, eight Beagle male dogs between the ages of 1 and 3 comprised the sample, randomly divided into two groups: vaccinated group (n = 7) and control group (n = 2). The second trial had 32 dogs with owners. In the first controlled conditions trial, the vaccine produced specific antibodies that remained until the end of the trial (day 270), inducing reduced testosterone and spermiogram changes in the immunized animals. In a second trial, on the field, specific immunity was induced, which remained high up to day 150. The vaccine also reduced sexual agonistic and marking behaviors. This new vaccine proved to be safe, immunogenic, capable of reducing gonadal functionality, and had a positive effect on inducing reduced sexual, agonistic, and marking behavior of the animals.
Collapse
|
3
|
Abstract
Optimal age for ovariohysterectomy or castration has not been defined in the scientific literature. Bitches and queens are significantly less likely to develop mammary neoplasia, which has a high incidence and potentially high morbidity and mortality, if spayed when young. Tom cats exhibit undesirable behaviors that preclude them being good pets and should be castrated young. There is no compelling reason to castrate male dogs when young unless it is needed to control reproductive behaviors or prevent indiscriminate breeding. Alternatives to surgical sterilization that may be available in the future include intratesticular injection and immunization against gonadotropin-releasing hormone.
Collapse
Affiliation(s)
- Margaret V Root Kustritz
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, 1365 Gortner Avenue, St Paul, MN 55108, USA.
| |
Collapse
|
4
|
Massei G, Cowan D. Fertility control to mitigate human–wildlife conflicts: a review. WILDLIFE RESEARCH 2014. [DOI: 10.1071/wr13141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As human populations grow, conflicts with wildlife increase. Concurrently, concerns about the welfare, safety and environmental impacts of conventional lethal methods of wildlife management restrict the options available for conflict mitigation. In parallel, there is increasing interest in using fertility control to manage wildlife. The present review aimed at analysing trends in research on fertility control for wildlife, illustrating developments in fertility-control technologies and delivery methods of fertility-control agents, summarising the conclusions of empirical and theoretical studies of fertility control applied at the population level and offering criteria to guide decisions regarding the suitability of fertility control to mitigate human–wildlife conflicts. The review highlighted a growing interest in fertility control for wildlife, underpinned by increasing numbers of scientific studies. Most current practical applications of fertility control for wild mammals use injectable single-dose immunocontraceptive vaccines mainly aimed at sterilising females, although many of these vaccines are not yet commercially available. One oral avian contraceptive, nicarbazin, is commercially available in some countries. Potential new methods of remote contraceptive delivery include bacterial ghosts, virus-like particles and genetically modified transmissible and non-transmissible organisms, although none of these have yet progressed to field testing. In parallel, new species-specific delivery systems have been developed. The results of population-level studies of fertility control indicated that this approach may increase survival and affect social and spatial behaviour of treated animals, although the effects are species- and context-specific. The present studies suggested that a substantial initial effort is generally required to reduce population growth if fertility control is the sole wildlife management method. However, several empirical and field studies have demonstrated that fertility control, particularly of isolated populations, can be successfully used to limit population growth and reduce human–wildlife conflicts. In parallel, there is growing recognition of the possible synergy between fertility control and disease vaccination to optimise the maintenance of herd immunity in the management of wildlife diseases. The review provides a decision tree that can be used to determine whether fertility control should be employed to resolve specific human–wildlife conflicts. These criteria encompass public consultation, considerations about animal welfare and feasibility, evaluation of population responses, costs and sustainability.
Collapse
|
5
|
|
6
|
Levy JK. Contraceptive vaccines for the humane control of community cat populations. Am J Reprod Immunol 2011; 66:63-70. [PMID: 21501281 DOI: 10.1111/j.1600-0897.2011.01005.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Free-roaming unowned stray and feral cats exist throughout the world, creating concerns regarding their welfare as well as their impact on the environment and on public health. Millions of healthy cats are culled each year in an attempt to control their numbers. Surgical sterilization followed by return to the environment is an effective non-lethal population control method but is limited in scope because of expense and logistical impediments. Immunocontraception has the potential to be a more practical and cost-effective method of control. This is a review of current research in immunocontraception in domestic cats. Functional characteristics of an ideal immunocontraceptive for community cats would include a wide margin of safety for target animals and the environment, rapid onset and long duration of activity following a single treatment in males and females of all ages, and sex hormone inhibition. In addition, product characteristics should include stability and ease of use under field conditions, efficient manufacturing process, and low cost to the user. Two reproductive antigens, zona pellucida and GnRH, have been identified as possible targets for fertility control in cats. Zona pellucida, which is used successfully in multiple wildlife species, has achieved little success in cats. In contrast, immunization against GnRH has resulted in long-term contraception in both male and female cats following a single dose. GnRH is an ideal contraceptive target because it regulates pituitary and gonadal hormone responses in both males and females, thus suppressing nuisance behaviors associated with sex hormones in addition to preventing pregnancy. The responsiveness of cats to fertility control via GnRH suppression should encourage researchers and cat control stakeholders to continue efforts to optimize vaccines that induce multiyear contraception following a single dose in a high proportion of treated cats.
Collapse
Affiliation(s)
- Julie K Levy
- Maddie's Shelter Medicine Program, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Bender SC, Bergman DL, Wenning KM, Miller LA, Slate D, Jackson FR, Rupprecht CE. No adverse effects of simultaneous vaccination with the immunocontraceptive GonaCon and a commercial rabies vaccine on rabies virus neutralizing antibody production in dogs. Vaccine 2010; 27:7210-3. [PMID: 19925955 DOI: 10.1016/j.vaccine.2009.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
Parenteral vaccination campaigns are integral to the elimination of canine rabies. To maximize herd immunity in dogs, immunocontraception provided at the time of rabies vaccination should reduce fecundity and dog abundance. GonaCon has been used successfully as an immunocontraceptive in a variety of mammals, and by inference, the dog would be an ideal candidate for testing. As an initial step in evaluating a combination-vaccination program, we assessed the effects of GonaCon on rabies virus neutralizing antibody production in dogs after administration of a veterinary rabies vaccine. Eighteen feral/free ranging dogs were included in this initial study: six were given GonaCon only, six were given rabies vaccination only, and six received GonaCon and rabies vaccination. Antibody levels were evaluated over 82 days. The use of the immunocontraceptive GonaCon did not affect the ability of dogs to seroconvert in response to the rabies vaccine. Thus, GonaCon provides a potential immunocontraceptive for use in combination with rabies vaccine to increase herd immunity and address dog population over abundance to better manage rabies.
Collapse
Affiliation(s)
- Scott C Bender
- Navajo Nation Veterinary Program, Navajo Nation, Chinle, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chastant-Maillard S, Chebrout M, Thoumire S, Saint-Dizier M, Chodkiewicz M, Reynaud K. Embryo biotechnology in the dog: a review. Reprod Fertil Dev 2010; 22:1049-56. [DOI: 10.1071/rd09270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/03/2010] [Indexed: 12/12/2022] Open
Abstract
Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.
Collapse
|
9
|
Gimenez F, Stornelli MC, Tittarelli CM, Savignone CA, Dorna IV, de la Sota RL, Stornelli MA. Suppression of estrus in cats with melatonin implants. Theriogenology 2009; 72:493-9. [PMID: 19535133 DOI: 10.1016/j.theriogenology.2009.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 03/31/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
The objective of this study was to assess the efficacy of a subcutaneous melatonin implant to suppress estrus in queens (felis catus). The hypothesis was that this implant would temporarily and reversibly suppress estrus in queens without producing any clinically detectable side effects. Fourteen adult queens were maintained in cages under artificial illumination (14h light:10h dark) for 45 d and then randomly assigned to one of two treatments. At interestrus, queens received a single subcutaneous melatonin implant (18mg; Melovine [CEVA Sante Animal, Libourne, France]; MEL: n=9), or a single subcutaneous placebo implant without melatonin (0mg; PLA; n=5). At the next estrus, all queens received a second MEL (n=9) or PLA (n=5) implant. Blood samples were taken when queens displayed estrous signs and during interestrus to measure estradiol (E(2)) and progesterone (P(4)), respectively, by radioimmunoassay. There were no significant differences in duration of the interestrus interval in PLA cats, regardless of whether the implants were placed during interestrus or estrus (6.0+/-9.7 d vs. 6.0+/-9.7 d, respectively; least square means [LSM]+/-SEM). However, when MEL implants were placed during interestrus, the duration of interestrus was approximately twice as long as that occurring when MEL implants were placed during estrus (113.3+/-6.1 d vs. 61.1+/-6.8 d, respectively; P<0.01). Serum E(2) and P(4) concentrations were similar in queens with PLA and MEL implants and in queens that received implants in estrus and interestrus. In conclusion, a subcutaneous MEL implant effectively and reversibly suppressed estrus in queens for approximately 2 to 4 mo with no clinically detectable side effects.
Collapse
Affiliation(s)
- F Gimenez
- Cátedra y Servicio de Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, B1900AVW, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
10
|
Gionfriddo JP, Eisemann JD, Sullivan KJ, Healey RS, Miller LA, Fagerstone KA, Engeman RM, Yoder CA. Field test of a single-injection gonadotrophin-releasing hormone immunocontraceptive vaccine in female white-tailed deer. WILDLIFE RESEARCH 2009. [DOI: 10.1071/wr08061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development and use of safe, effective and practical wildlife contraceptive agents could reduce reproduction in locally overabundant deer populations in situations where traditional management tools such as regulated hunting cannot be employed. GonaCon Immunocontraceptive Vaccine (the commercial name for a particular gonadotrophin-releasing hormone (GnRH)-based emulsion) was tested in adult female white-tailed deer in a fenced herd near Silver Spring, Maryland, USA. Observations of udder condition were used to identify does that had become pregnant. Necropsy observations, histopathology and serum concentrations of anti-GnRH antibodies, luteinising hormone and progesterone were used to compare health and reproductive status of treated (n = 28) and control (n = 15) deer. After receiving one injection of GonaCon, 88% of treated deer did not become pregnant during the first year and 47% did not become pregnant during the second year after vaccination. No adverse health effects related to vaccination with GonaCon were detected, except for localised injection-site reactions in five (29%) of 17 examined, vaccinated deer. Treatment with GonaCon can be a safe and effective means of inducing temporary infertility in wild white-tailed deer. Ultimately, the management value of GonaCon will be determined by natural-resource professionals who use it as one of many tools to manage deer populations.
Collapse
|
11
|
Reynaud K, Gicquel C, Thoumire S, Chebrout M, Ficheux C, Bestandji M, Chastant-Maillard S. Folliculogenesis and morphometry of oocyte and follicle growth in the feline ovary. Reprod Domest Anim 2008; 44:174-9. [PMID: 19055566 DOI: 10.1111/j.1439-0531.2007.01012.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to describe, both quantitatively (morphometry) and qualitatively (histological differentiation), follicle and oocyte growth in the feline ovary. The ovaries of 43 cats were collected and processed for histology. The diameters of 832 follicle/oocyte pairs were measured, with and without zona pellucida (ZP), and a special emphasis was placed on the study of early folliculogenesis. Primordial, primary, secondary, pre-antral and early antral follicles were measured at 44.3, 86.2, 126.0, 155.6 and 223.8 microm in diameter respectively. A biphasic pattern of follicle and oocyte growth was observed. Before antrum formation, follicle (x) and oocyte (y) size were positively and linearly correlated (y = 0.500x + 20.01, r(2) = 0.89). Antrum formation occurred when the follicle reached 160-200 microm in diameter (when oocyte was at 102 microm). After antrum formation, a decoupling was observed, a minimal increase in oocyte size contrasting with a significant follicle development (y = 0.001x + 114.39, r(2) = 0.01). The pre-ovulatory follicle diameter was approximately 3500 microm and the maximal oocyte diameter was 115 microm. The ZP, absent in primordial and primary follicles, appeared at the secondary stage and reached almost 6 microm at the pre-ovulatory stage. These results suggest that (i) in feline ovary, follicle and oocyte growth pattern is similar to that observed in other mammals; (ii) the antrum forms in 160-200 microm follicles, which represents 5% of the pre-ovulatory diameter and (iii) the oocyte had achieved more than 90% of its maximal growth at the stage of antrum formation.
Collapse
Affiliation(s)
- K Reynaud
- UMR 1198 INRA/ENVA/CNRS Biologie du Développement et Reproduction, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, Maisons-Alfort Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Animal overpopulation including feral cats is an important global problem. There are many stakeholders involved in the feral cat debate over 'what to do about the problem', including those who consider them a nuisance, the public at risk from zoonotic disease, people who are concerned about the welfare of feral cats, those concerned with wildlife impacts, and the cats themselves. How best to control this population is controversial and has ranged from culling, relocation, and more recently 'trap neuter return' (TNR) methods. Data support the success of TNR in reducing cat populations, but to have a large impact it will have to be adopted on a far greater scale than it is currently practised. Non-surgical contraception is a realistic future goal. Because the feral cat problem was created by humans, concerted educational efforts on responsible pet ownership and the intrinsic value of animals is an integral part of a solution.
Collapse
|