1
|
Velloso Alvarez A, Jose-Cunilleras E, Dorrego-Rodriguez A, Santiago-Llorente I, de la Cuesta-Torrado M, Troya-Portillo L, Rivera B, Vitale V, de Juan L, Cruz-Lopez F. Detection of equine herpesvirus-1 (EHV-1) in urine samples during outbreaks of equine herpesvirus myeloencephalopathy. Equine Vet J 2024; 56:456-463. [PMID: 37699794 DOI: 10.1111/evj.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Real-time PCR is the diagnostic technique of choice for the diagnosis and control of equine herpesvirus-1 (EHV-1) in an outbreak setting. The presence of EHV-1 in nasal swabs (NS), whole blood, brain and spinal cord samples has been extensively described; however, there are no reports on the excretion of EHV-1 in urine, its DNA detection patterns, and the role of urine in viral spread during an outbreak. OBJECTIVES To determine the presence of EHV-1 DNA in urine during natural infection and to compare the DNA detection patterns of EHV-1 in urine, buffy coat (BC) and NS. STUDY DESIGN Descriptive study of natural infection. METHODS Urine and whole blood/NS samples were collected at different time points during the hospitalisation of 21 horses involved in two EHV-1 myeloencephalopathy outbreaks in 2021 and 2023 in Spain. Quantitative real-time PCR was performed to compare the viral DNA load between BC-urine samples in 2021 and NS-urine samples in 2023. Sex, age, breed, presence of neurological signs, EHV-1 vaccination status and treatment data were recorded for all horses. RESULTS A total of 18 hospitalised horses during the 2021 and 2023 outbreaks were positive for EHV-1, and viral DNA was detected in urine samples from a total of 11 horses in both outbreaks. Compared with BC samples, DNA presence was detected in urine samples for longer duration and with slightly higher concentration; however, compared with NS, detection of EHV-1 in urine was similar in duration with lower DNA concentrations. MAIN LIMITATIONS Limited sample size, different sampling times and protocols (BC vs. NS) in two natural infection outbreak settings. CONCLUSIONS EHV-1 was detected in the urine from naturally infected horses. Urine should be considered as complimentary to blood and NS in diagnosis of EHV-1 infection.
Collapse
Affiliation(s)
| | - E Jose-Cunilleras
- Unitat Equina, Fundació Hospital Clínic Veterinari, Cerdañola del Valles, Spain
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdañola del Valles, Spain
| | | | | | | | - Lucas Troya-Portillo
- Unitat Equina, Fundació Hospital Clínic Veterinari, Cerdañola del Valles, Spain
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdañola del Valles, Spain
| | - Belen Rivera
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | | | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
- Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Fatima Cruz-Lopez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| |
Collapse
|
2
|
Mannini A, Ellero N, Urbani L, Balboni A, Imposimato I, Battilani M, Gialletti R, Freccero F. Medical management and positive outcome after prolonged recumbency in a case of equine herpesvirus myeloencephalopathy. J Equine Vet Sci 2024; 136:105063. [PMID: 38608970 DOI: 10.1016/j.jevs.2024.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
A 17-year-old mare presenting with acute fever, weakness and bladder dysfunction was diagnosed with equine herpesvirus myeloencephalopathy (EHM). The mare become transiently recumbent, underwent parenteral fluid therapy, plasma infusion, steroidal/nonsteroidal anti-inflammatory drugs (SAID/NSAIDs) and bladder catheterization. After 10 days the mare was hospitalized. Neurological evaluation revealed ataxia and proprioceptive deficits mainly in the hind limbs. The mare was able to stand but unable to rise from recumbency or walk. Secondary complications included Escherichia coli cystitis, corneal ulcers and pressure sores. A full-body support sling was used for 21 days. Medical treatment included systemic antimicrobials, NSAIDs, gradual discontinuation of SAIDs, parenteral fluid therapy and bladder lavage. The mare tested positive for Varicellovirus equidalpha 1 (EHV-1) DNA in nasal swab and blood samples on day 13 and in urine samples on days 13 and 25 after the onset of fever. Neurological signs improved over a period of 34 days and the mare was discharged with mild hind limb weakness/ataxia. Secondary complications resolved within 2 weeks. At the eight-month follow-up, marked improvement in locomotory function had been achieved.
Collapse
Affiliation(s)
- A Mannini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - N Ellero
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - L Urbani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - A Balboni
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - I Imposimato
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - M Battilani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - R Gialletti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - F Freccero
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
3
|
Abstract
Although equine herpesvirus myeloencephalopathy (EHM) is a relatively uncommon manifestation of equine herpesvirus-1 (EHV-1) infection, it can cause devastating losses during outbreaks. Antemortem diagnosis of EHM relies mainly on the molecular detection of EHV-1 in nasal secretions and blood. Management of horses affected by EHM is aimed at supportive nursing and nutritional care, at reducing central nervous system inflammation and preventing thromboembolic sequelae. Horses exhibiting sudden and severe neurologic signs consistent with a diagnosis of EHM pose a definite risk to the surrounding horse population. Consequently, early intervention to prevent the spread of infection is required.
Collapse
|
4
|
Hussey GS, Giessler KS. Contribution of the immune response to the pathogenesis of equine herpesvirus-1 (EHV-1): Are there immune correlates that predict increased risk or protection from EHV-1 myeloencephalopathy? Vet J 2022; 282:105827. [PMID: 35405348 DOI: 10.1016/j.tvjl.2022.105827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/06/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
Equine herpesvirus-1 (EHV-1) myeloencephalopathy (EHM) is a devastating consequence of EHV-1 infection that has significant economic consequences. However, clinical EHM is relatively rare and occurs in only approximately 10% of infected horses. While there is a positive correlation between the duration and magnitude of viremia and incidence of EHM, it is likely that a combination of host and viral factors determine whether EHM occurs. The identification of these factors is of high interest for the equine community and has been the topic of much research for vaccine development and to predict which horses might be most at risk for developing EHM. The aim of this review is to highlight host immunity contributions to EHM pathogenesis at different sites of EHV-1 infection to shed light on the different aspects and interdependence of the response to EHV-1 in the time course of infection.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing MI 48824, USA.
| | - Kim S Giessler
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing MI 48824, USA
| |
Collapse
|
5
|
Carvelli A, Nielsen SS, Paillot R, Broglia A, Kohnle L. Clinical impact, diagnosis and control of Equine Herpesvirus-1 infection in Europe. EFSA J 2022; 20:e07230. [PMID: 35414834 PMCID: PMC8985062 DOI: 10.2903/j.efsa.2022.7230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) can affect the entire equine sector in EU, and the large outbreak reported in 2021 in Spain drew attention to the needs of the European Commission for scientific advice for the assessment of EHV-1 infection within the framework of Animal Health Law. EHV-1 is considered endemic in the EU; its main risk is linked to the characteristic of producing latent life-long infections. These can reactivate producing clinical disease, which can include respiratory, abortive and possibly fatal neurological forms. From the epidemiological and genomic viewpoint, there are no specific neuropathogenic EHV-1 strains; the respiratory, reproductive and neurological signs are not found to be strain-specific. This was also the case of the virus that caused the outbreak in Valencia (Spain) in 2021, which was genetically closely related to other viruses circulating before in Europe, and did not present the so-called neuropathogenic genotype. The outbreak reported in Valencia was followed by wide geographic spread of the virus possibly due to a delay in diagnosis and late application of biosecurity measures. The recommended and most sensitive diagnostic test for detecting EHV-1 is PCR performed on swabs collected according to the type of clinical signs. Serological assays on paired blood samples can help to detect a recent infection, while no diagnostic methods are available to detect EHV-1 latent infections. Safe movements of horses can be ensured at premovement phase by testing and issuing health certificates, and by isolating animals upon arrival at new premises with regular health monitoring. In case of suspicion, movements should be forbidden and EHV-1 infection early detected/confirmed by validated diagnostic tools. During outbreaks, no movements should be allowed until 21 days after the detection of the last case. In general, vaccination against EHV-1 should be promoted, although this offers limited protection against the neurological form of the disease.
Collapse
|
6
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Roberts HC, Padalino B, Pasquali P, Spoolder H, Ståhl K, Calvo AV, Viltrop A, Winckler C, Carvelli A, Paillot R, Broglia A, Kohnle L, Baldinelli F, Van der Stede Y. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infection with Equine Herpesvirus-1. EFSA J 2022; 20:e07036. [PMID: 35035581 PMCID: PMC8753587 DOI: 10.2903/j.efsa.2022.7036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equine Herpesvirus-1 infection has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of: Article 7 on disease profile and impacts, Article 5 on the eligibility of the disease to be listed, Article 9 for the categorisation of the disease according to disease prevention and control measures as in Annex IV and Article 8 on the list of animal species related to Equine Herpesvirus-1 infection. The assessment has been performed following a methodology composed of information collection and compilation, and expert judgement on each criterion at individual and collective level. The outcome is the median of the probability ranges provided by the experts, which indicates whether the criterion is fulfilled (66-100%) or not (0-33%), or whether there is uncertainty about fulfilment (33-66%). For the questions where no consensus was reached, the different supporting views are reported. According to the assessment performed, Equine Herpesvirus-1 infection can be considered eligible to be listed for Union intervention according to Article 5 of the Animal Health Law with 33-90% certainty. According to the criteria as in Annex IV of the AHL related to Article 9 of the AHL for the categorisation of diseases according to the level of prevention and control, it was assessed with less than 1% certainty that EHV-1 fulfils the criteria as in Section 1 (category A), 1-5% for the criteria as in Section 2 (category B), 10-66% for the criteria as in Section 3 (category C), 66-90% for the criteria as in Section 4 (category D) and 33-90% for the criteria as in Section 5 (category E). The animal species to be listed for EHV-1 infection according to Article 8(3) criteria are the species belonging to the families of Equidae, Bovidae, Camelidae, Caviidae, Cervidae, Cricetidae, Felidae, Giraffidae, Leporidae, Muridae, Rhinocerontidae, Tapiridae and Ursidae.
Collapse
|
7
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
8
|
Holz CL, Sledge DG, Kiupel M, Nelli RK, Goehring LS, Soboll Hussey G. Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses. Front Vet Sci 2019; 6:59. [PMID: 30886853 PMCID: PMC6409500 DOI: 10.3389/fvets.2019.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Dodd G Sledge
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lutz S Goehring
- Equine Hospital - Division of Medicine and Reproduction, Ludwig-Maximilians University, Munich, Germany
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Negussie H, Li Y, Tessema TS, Nauwynck HJ. Replication characteristics of equine herpesvirus 1 and equine herpesvirus 3: comparative analysis using ex vivo tissue cultures. Vet Res 2016; 47:19. [PMID: 26768993 PMCID: PMC4714513 DOI: 10.1186/s13567-016-0305-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022] Open
Abstract
Replication kinetics and invasion characteristics of equine herpesvirus-1 and -3 (EHV-1/-3) in nasal and vaginal mucosae were compared using explants. The explants were cultured during 96 h with little change in viability. The tissues were inoculated with EHV-1 03P37 (neuropathogenic), 97P70 (abortigenic) and EHV-3 04P57, collected at 0, 24, 48 and 72 h post inoculation (pi) and stained for viral antigens. Both EHV-1 and EHV-3 replicated in a plaquewise manner. The plaques were already observed at 24 h pi, their size increased over time and did not directly cross the basement membrane (BM). However, EHV-1 infected the monocytic cells (MC) and hijacked these cells to invade the lamina propria. In contrast, EHV-3 replication was fully restricted to epithelial cells; the virus did not breach the BM via a direct cell-to-cell spread nor used infected MC. EHV-1-induced plaques were larger in nasal mucosa compared to vaginal mucosa. The opposite was found for EHV-3-induced plaques. Both EHV-1 strains replicated with comparable kinetics in nasal mucosa. However, the extent of replication of the abortigenic strain in vaginal mucosa was significantly higher than that of the neuropathogenic strain. Two-to-five-fold lower numbers of EHV-1-infected MC underneath the BM were found in vaginal mucosa than in nasal mucosa. Our study has shown that (i) EHV-1 has developed in evolution a predisposition for respiratory mucosa and EHV-3 for vaginal mucosa, (ii) abortigenic EHV-1 replicates better in vaginal mucosa than neuropathogenic EHV-1 and (iii) EHV-3 demonstrated a strict epithelial tropism whereas EHV-1 in addition hijacked MC to invade the lamina propria.
Collapse
Affiliation(s)
- Haileleul Negussie
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Debre Ziet, Ethiopia.
| | - Yewei Li
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
Hu Z, Zhu C, Chang H, Guo W, Liu D, Xiang W, Wang X. Development of a single-tube duplex EvaGreen real-time PCR for the detection and identification of EHV-1 and EHV-4. Appl Microbiol Biotechnol 2014; 98:4179-86. [PMID: 24615388 DOI: 10.1007/s00253-014-5626-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/24/2022]
Abstract
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50-1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.
Collapse
Affiliation(s)
- Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ma G, Azab W, Osterrieder N. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)—Masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol 2013; 167:123-34. [DOI: 10.1016/j.vetmic.2013.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 12/28/2022]
|
13
|
Walter J, Balzer HJ, Seeh C, Fey K, Bleul U, Osterrieder N. Venereal Shedding of Equid Herpesvirus-1 (EHV-1) in Naturally Infected Stallions. J Vet Intern Med 2012; 26:1500-4. [DOI: 10.1111/j.1939-1676.2012.00997.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 06/21/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. Walter
- Klinik für Reproduktionsmedizin; Vetsuisse-Fakultät Universität Zürich; Zürich; Switzerland
| | - H.-J. Balzer
- Vet Med Labor GmbH; Division of IDEXX Laboratories; Ludwigsburg; Germany
| | - C. Seeh
- Pferdegesundheitsdienst; Tierseuchenkasse Baden-Württemberg; Fellbach; Germany
| | - K. Fey
- Klinik für Pferde - Innere Medizin; Justus-Liebig-Universität; Giessen; Germany
| | - U. Bleul
- Klinik für Reproduktionsmedizin; Vetsuisse-Fakultät Universität Zürich; Zürich; Switzerland
| | - N. Osterrieder
- Institut für Virologie; Freie Universität Berlin; Berlin; Germany
| |
Collapse
|
14
|
Alkhleif O, Pellerin JL, Larrat M, Roux C, Maindron E, Richard L, Fiéni F, Bruyas JF. Systematic and regular vaccination against rhinopneumonitis of all horses in a breeding stud can decrease the risk of excretion of EHV1 in semen of healthy stallions. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Fritsche AK, Borchers K. Detection of neuropathogenic strains of Equid Herpesvirus 1 (EHV-1) associated with abortions in Germany. Vet Microbiol 2010; 147:176-80. [PMID: 20619972 DOI: 10.1016/j.vetmic.2010.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/27/2022]
Abstract
A single nucleotide polymorphism within EHV-1 gene ORF 30, which encodes for the viral DNA polymerase, allows the differentiation of the neuropathogenic (G2254) from non-neuropathogenic genotype (A2254). The aim of our study was to investigate the distribution of the neuropathogenic and non-neuropathogenic genotype of EHV-1 isolates associated with abortions in Germany. To determine the nucleotide sequence at the polymorphic site the amplification product of ORF 30 gene specific nested PCR was digested with restriction enzyme SalI and sequenced. Thirty-two EHV-1 isolates from six abortion outbreaks and 34 archived isolates from individual cases were obtained between 1987 and 2009 from stud farms in different regions of Germany. 89.4% (59/66) of the EHV-1 abortion isolates was of non-neuropathogenic genotype (N752/A2254) and 10.6% (7/66) contained the neuropathogenic marker (D752/G2254). Two out of seven EHV-1 abortion isolates with the mutation (G2254) came from the same outbreak and were derived from mares with neurological signs. Interestingly, the semen of a stallion from the same stud was tested positive for the neuropathogenic genotype (G2254) too. The other five EHV-1 strains came from individual abortion cases with no neurological signs. In addition to the A2254 to G2254 substitution, two EHV-1 reference strains (Ab4 and RacH) and one field isolate from an individual abortion case showed an exchange of adenine to cytosine at position 2258. In sum, we confirmed coherence between the occurrence of abortions and the non-neuropathogenic EHV-1 (A2254), but 10.6% of the abortion strains carried the mutation (G2254). The relevance of this finding as well as the role of the additional mutation and of stallions as carriers should be further investigated.
Collapse
Affiliation(s)
- A-K Fritsche
- Institute of Virology, Faculty of Veterinary Medicine, Free University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| | | |
Collapse
|