1
|
Pham LHP, Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo X. Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 2023; 5:100103. [PMID: 36691521 PMCID: PMC9860113 DOI: 10.1016/j.bioflm.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Biofilms are found in many infections in the forms of surface-adhering aggregates on medical devices, small clumps in tissues, or even in synovial fluid. Although antibiotic resistance genes are studied and monitored in the clinic, the structural and phenotypic changes that take place in biofilms can also lead to significant changes in how bacteria respond to antibiotics. Therefore, it is important to better understand the relationship between biofilm phenotypes and resistance and develop approaches that are compatible with clinical testing. Current methods for studying antimicrobial susceptibility are mostly planktonic or planar biofilm reactors. In this work, we develop a new type of biofilm reactor-three-dimensional (3D) microreactors-to recreate biofilms in a microenvironment that better mimics those in vivo where bacteria tend to form surface-independent biofilms in living tissues. The microreactors are formed on microplates, treated with antibiotics of 1000 times of the corresponding minimal inhibitory concentrations (1000 × MIC), and monitored spectroscopically with a microplate reader in a high-throughput manner. The hydrogels are dissolvable on demand without the need for manual scraping, thus enabling measurements of phenotypic changes. Bacteria inside the biofilm microreactors are found to survive exposure to 1000 × MIC of antibiotics, and subsequent comparison with plating results reveals no antibiotic resistance-associated phenotypes. The presented microreactor offers an attractive platform to study the tolerance and antibiotic resistance of surface-independent biofilms such as those found in tissues.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Khanh Loan Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Mariliz Colon-Ascanio
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Jin Ou
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Hao Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Sang Won Lee
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Yi Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Kenneth Scott Phillips
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
2
|
Ryan PL, Christiansen DL, Hopper RM, Walters FK, Moulton K, Curbelo J, Greene JM, Willard ST. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria. J Anim Sci 2011; 89:1541-51. [PMID: 21239661 DOI: 10.2527/jas.2010-3629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Uterine and placental infections are the leading cause of abortion, stillbirth, and preterm delivery in the mare. Whereas uterine and placental infections in women have been studied extensively, a comprehensive examination of the pathogenic processes leading to this unsatisfactory pregnancy outcome in the mare has yet to be completed. Most information in the literature relating to late-term pregnancy loss in mares is based on retrospective studies of clinical cases submitted for necropsy. Here we report the development and application of a novel approach, whereby transgenically modified bacteria transformed with lux genes of Xenorhabdus luminescens or Photorhabdus luminescens origin and biophotonic imaging are utilized to better understand pathogen-induced preterm birth in late-term pregnant mares. This technology uses highly sensitive bioluminescence imaging camera systems to localize and monitor pathogen progression during tissue invasion by measuring the bioluminescent signatures emitted by the lux-modified pathogens. This method has an important advantage in that it allows for the potential tracking of pathogens in vivo in real time and over time, which was hitherto impossible. Although the application of this technology in domestic animals is in its infancy, investigators were successful in identifying the fetal lungs, sinuses, nares, urinary, and gastrointestinal systems as primary tissues for pathogen invasion after experimental infection of pregnant mares with lux-modified Escherichia coli. It is important that pathogens were not detected in other vital organs, such as the liver, brain, and cardiac system. Such precision in localizing sites of pathogen invasion provides potential application for this novel approach in the development of more targeted therapeutic interventions for pathogen-related diseases in the equine and other domestic species.
Collapse
Affiliation(s)
- P L Ryan
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MI 39762, USA.
| | | | | | | | | | | | | | | |
Collapse
|