1
|
Luo C, Wang Z, Wang J, Yun F, Lu F, Fu J, Liu Q, Shi D. Individual variation in buffalo somatic cell cloning efficiency is related to glycolytic metabolism. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2076-2092. [PMID: 35366153 DOI: 10.1007/s11427-021-2039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Mammalian individuals differ in their somatic cell cloning efficiency, but the mechanisms leading to this variation is poorly understood. Here we found that high cloning efficiency buffalo fetal fibroblasts (BFFs) displayed robust energy metabolism, looser chromatin structure, high H3K9 acetylation and low heterochromatin protein 1α (HP1α) expression. High cloning efficiency BFFs had more H3K9ac regions near to the upstream of glycolysis genes by ChIP-seq, and involved more openness loci related to glycolysis genes through ATAC-seq. The expression of these glycolysis genes was also found to be higher in high cloning efficiency BFFs by qRT-PCR. Two key enzymes of glycolysis, PDKs and LDH, were confirmed to be associated with histone acetylation and chromatin openness of BFFs. Treatment of low cloning efficiency BFFs with PS48 (activator of PDK1) resulted in an increase in the intracellular lactate production and H3K9 acetylation, decrease in histone deacetylase activity and HP1α expression, less condensed chromatin structure and more cloning embryos developing to blastocysts. These results indicate that the cloning efficiency of buffalo somatic cells is associated with their glycolytic metabolism and chromatin structure, and can be improved by increasing glycolytic metabolism.
Collapse
Affiliation(s)
- Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Feng Yun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jiayuan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
2
|
Smirnov AV, Shnaider TА, Korablev AN, Yunusova AM, Serova IA, Battulin NR. A hypomorphic mutation in the mouse Csn1s1 gene generated by CRISPR/Cas9 pronuclear microinjection. Vavilovskii Zhurnal Genet Selektsii 2021; 25:331-336. [PMID: 34901729 PMCID: PMC8627868 DOI: 10.18699/vj21.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Caseins are major milk proteins that have an evolutionarily conserved role in nutrition. Sequence variations in the
casein genes affect milk composition in livestock species. Regulatory elements of the casein genes could be used to direct
the expression of desired transgenes into the milk of transgenic animals. Dozens of casein alleles have been identified for
goats, cows, sheep, camels and horses, and these sequence variants are associated with altered gene expression and milk
protein content. Most of the known mutations affecting casein genes’ expression are located in the promoter and 3’-untranslated regions. We performed pronuclear microinjections with Cas9 mRNA and sgRNA against the first coding exon of
the mouse Csn1s1 gene to introduce random mutations in the α-casein (Csn1s1) signal peptide sequence at the beginning
of the mouse gene. Sanger sequencing of the founder mice identified 40 mutations. As expected, mutations clustered
around the sgRNA cut site (3 bp from PAM). Most of the mutations represented small deletions (1–10 bp), but we detected
several larger deletions as well (100–300 bp). Functionally most mutations led to gene knockout due to a frameshift or a
start codon loss. Some of the mutations represented in-frame indels in the first coding exon. Of these, we describe a novel
hypomorphic Csn1s1 (Csn1s1c.4-5insTCC) allele. We measured Csn1s1 protein levels and confirmed that the mutation has a
negative effect on milk composition, which shows a 50 % reduction in gene expression and a 40–80 % decrease in Csn1s1
protein amount, compared to the wild-type allele. We assumed that mutation affected transcript stability or splicing by an
unknown mechanism. This mutation can potentially serve as a genetic marker for low Csn1s1 expression.
Collapse
Affiliation(s)
- A V Smirnov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T А Shnaider
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A N Korablev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Yunusova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I A Serova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N R Battulin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Skrzyszowska M, Samiec M. Generating Cloned Goats by Somatic Cell Nuclear Transfer-Molecular Determinants and Application to Transgenics and Biomedicine. Int J Mol Sci 2021; 22:ijms22147490. [PMID: 34299109 PMCID: PMC8306346 DOI: 10.3390/ijms22147490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
The domestic goat (Capra aegagrus hircus), a mammalian species with high genetic merit for production of milk and meat, can be a tremendously valuable tool for transgenic research. This research is focused on the production and multiplication of genetically engineered or genome-edited cloned specimens by applying somatic cell nuclear transfer (SCNT), which is a dynamically developing assisted reproductive technology (ART). The efficiency of generating the SCNT-derived embryos, conceptuses, and progeny in goats was found to be determined by a variety of factors controlling the biological, molecular, and epigenetic events. On the one hand, the pivotal objective of our paper was to demonstrate the progress and the state-of-the-art achievements related to the innovative and highly efficient solutions used for the creation of transgenic cloned does and bucks. On the other hand, this review seeks to highlight not only current goals and obstacles but also future challenges to be faced by the approaches applied to propagate genetically modified SCNT-derived goats for the purposes of pharmacology, biomedicine, nutritional biotechnology, the agri-food industry, and modern livestock breeding.
Collapse
|
4
|
Yuan Y, Liu R, Zhang X, Zhang J, Zheng Z, Huang C, Cao G, Liu H, Zhang X. Effects of recipient oocyte source, number of transferred embryos and season on somatic cell nuclear transfer efficiency in sheep. Reprod Domest Anim 2019; 54:1443-1448. [PMID: 31381183 DOI: 10.1111/rda.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022]
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT) in sheep, we investigated the effects of recipient oocyte source, number of transferred embryos and season on the pregnancy and live lamb rates for sheep somatic cell nuclear transfer embryos. Follicle-stimulating hormone (FSH)-stimulated ovaries produced significantly more oocytes both in total and of suitable quality for maturation culture than those without FSH treatment (from slaughterhouse). However, their in vitro maturation rates were similar. Embryos were reconstructed using adult fibroblast cells into enucleated MII oocytes. The pregnancy and term rates were significantly higher in the FSH-stimulated group than in the slaughterhouse one. Oocytes from FSH-stimulated ovaries were enucleated as recipient cytoplasm for nuclear transfer in the following experiments. The transfer of 7-9 and 11-13 embryos produced significantly higher pregnancy rates than that of six embryos. However, the former groups exhibited similar live lamb rates. FSH-stimulated ovaries produced significantly more oocytes in November and December (winter) than in May to July (summer), but the associated maturation rate did not increase. Pregnancy and term rates were significantly higher when transfer occurred in winter than in summer. In conclusion, FSH treatment produced significant benefit regarding the number and quality of collected oocytes and also for the pregnancy and live lamb rates for reconstructed embryos. However, the transfer of an appropriate number of embryos (7-13) and at an appropriate season (winter) increased pregnancy and term rates.
Collapse
Affiliation(s)
- Yixin Yuan
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruming Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, China
| | - Jinlong Zhang
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, China
| | - Zi Zheng
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, China
| | - Chengjun Huang
- Animal Husbandry Economic Management Station of Liaoning Province, Shenyang, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Haijun Liu
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, China
| | - Xianfu Zhang
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
5
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Cao Y, Dong Z, Zhang D, Zhou H. Stillbirth risk on fat-1 transgenic foetus of sheep caused by deregulated DNA methylation of imprinted genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zhicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Huanmin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
7
|
Wan Y, Deng M, Zhang G, Ren C, Liu Z, Wang F. Analysis of H19/Igf2 Methylation Status in the Sperm of Cloned Goats and Their Offspring. Cell Reprogram 2018; 20:66-75. [DOI: 10.1089/cell.2017.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Abstract
DNA methylation is an important form of epigenetic regulation in mammalian development. Methyl-CpG-binding domain protein 1 (MBD1) and methyl-CpG-binding domain protein 2 (MeCP2) are two members of the MBD subfamily of proteins that bind methylated CpG to maintain the silencing effect of DNA methylation. Given their important roles in linking DNA methylation with gene silencing, this study characterized the coordinated mRNA expression and protein localization of MBD1 and MeCP2 in embryos and placentas and aimed to analysis the effects of MBD1 and MeCP2 on transgenic cloned goats. Our result showed that MBD1 expression of transgenic cloned embryo increased significantly at the 2-4-cell and 8-16-cell stages (P < 0.05), then decreased at the morula and blastocyst stages (P < 0.05); MeCP2 expression in transgenic cloned embryo was significant decreased at the 2-4-cell stage and increased at the 8-16-cell stage (P < 0.05). Placenta morphology analysis showed that the cotyledon number of deceased transgenic cloned group (DTCG) was significantly lower than that the normal goats (NG) and in the live transgenic cloned goats (LTCG) (P < 0.05). MBD1 and MeCP2 were clearly detectable in the placental trophoblastic binucleate cells by immunohistochemical staining. Moreover, MBD1 and MeCP2 expression in DTCG was significant higher than in the NG and the LTCG (P < 0.05). In summary, aberrant expression of methylation CpG binding proteins MBD1 and MeCP2 was detected in embryonic and placental development, which reflected abnormal transcription regulation and DNA methylation involved in MBD1 and MeCP2. These findings have implications in understanding the low efficiency of transgenic cloning.
Collapse
|
9
|
Deng M, Ren C, Liu Z, Zhang G, Wang F, Wan Y. Epigenetic Status of H19-Igf2 Imprinted Genes and Loss of 5-Hydroxymethylcytosine in the Brain of Cloned Goats. Cell Reprogram 2017; 19:199-207. [PMID: 28350187 DOI: 10.1089/cell.2016.0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammals, the imprinted genes play vital roles in development and are generally controlled by DNA methylation at imprinting control regions (ICRs). Recently, it was discovered that 5-hydroxymethylcytosine (5-hmC) is a stable epigenetic modification; however, its functions in cloned animal genomes have not yet been fully elucidated. In this study, we interrogated and quantified the 5-hmC levels in the brain of cloned goats and discovered upregulation of Uhrf1 (p < 0.001), Dnmt1 (p < 0.05), Dnmt3a (p < 0.05), Igf2 (p < 0.01), and H19 (p < 0.05) and downregulation of Dnmt3b (p < 0.001), Tet1 (p < 0.001), Tet2 (p < 0.05), Tet3 (p < 0.001), Mecp2 (p < 0.05), and Igf2r (p < 0.05) in deceased cloned goat tissues compared with the normal controls. We demonstrated that DNA methylation was increased at H19 ICR (51.33% ± 2.03% vs. 93.07% ± 3.06%; p < 0.01) and that DNA was hypomethylated at Igf2 ICR (4.57% ± 1.48% vs. 7.63% ± 1.83%; p > 0.05) in the brain of deceased cloned goats. Finally, we showed that within the cloned goat brain genome, the amount of genome-wide 5-hmC was significantly decreased (0.083% ± 0.026% vs. 0.024% ± 0.007%; p < 0.05), whereas the 5-hmC levels within H19 and Igf2 CCGG sites were not significantly altered (0.17% ± 0.09% vs. 0.03% ± 0.01%; p > 0.05) in the brain of deceased cloned goats. Our data bring further experimental evidence regarding the abnormalities in 5-hmC and advance our current understanding of the role of 5-hmC in cloned animals.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| |
Collapse
|
10
|
Song H, Li H, Huang M, Xu D, Wang Z, Wang F. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells. Cell Reprogram 2016; 18:37-47. [PMID: 26836033 DOI: 10.1089/cell.2015.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.
Collapse
Affiliation(s)
- Hui Song
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Hui Li
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Mingrui Huang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Dan Xu
- 3 Stanford University School of Medicine , Stanford, CA, 94305
| | - Ziyu Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Feng Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| |
Collapse
|
11
|
Martins LT, Neto SG, Tavares KCS, Calderón CEM, Aguiar LH, Lazzarotto CR, Ongaratto FL, Rodrigues VHV, Carneiro IDS, Rossetto R, Almeida AP, Fernandes CCL, Rondina D, Dias ACO, Chies JM, Polejaeva IA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Developmental Outcome and Related Abnormalities in Goats: Comparison Between Somatic Cell Nuclear Transfer- and In Vivo-Derived Concepti During Pregnancy Through Term. Cell Reprogram 2016; 18:264-79. [PMID: 27362734 DOI: 10.1089/cell.2015.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer (SCNT) is characterized by low efficiency and the occurrence of developmental abnormalities, which are rather poorly studied phenomena in goats. This study aimed at comparing overall SCNT efficiency in goats by using in vitro-matured (IVM) or in vivo-matured oocytes and fibroblast donor cells (mock transfected, transgenic, or wild type), also characterizing symptoms of the Abnormal Offspring Syndrome (AOS) in development, comparing results with pregnancies produced by artificial insemination (AI) and in vivo-derived (IVD) embryos. The SCNT group had lower pregnancy rate (18.3%, 11/60), total number of concepti (20.0%, 12/60), term births (3.3%, 2/60), and live births (1.7%, 1/60) than both the IVD (77.8%, 7/9; 155.5%, 14/9; 122.2%, 11/9; 88.8%, 8/9) and the AI (71.4%, 10/14; 121.4%, 17/14; 100%, 14/14; 78.5%, 11/14) groups, respectively (p < 0.05). No SCNT pregnancies reached term using IVM oocytes, but in vivo-matured oocytes resulted in two term transgenic cloned kids. The proportion fetal membrane (FM) weight/birth weight reflected an increase in FM size and cotyledonary enlargement in clones, for disproportionally bigger newborns in relation to cotyledonary numbers. Overall, goat cloning showed losses and abnormality patterns similar to the AOS in cloned cattle and sheep, which have not been previously well recognized in goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felipe Ledur Ongaratto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| | | | | | - Rafael Rossetto
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | - Anderson Pinto Almeida
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,3 Ceará State University (UECE) , Fortaleza, Brazil
| | | | | | | | | | - Irina A Polejaeva
- 5 Department of Animal, Dairy and Veterinary Sciences, Utah State University , Logan, Utah, USA
| | | | - Fabiana Forell
- 6 Santa Catarina State University (UDESC) , Lages, Brazil
| | - Luciana Relly Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,7 Pontificial Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre, Brazil
| | - Marcelo Bertolini
- 1 University of Fortaleza (UNIFOR) , Fortaleza, Brazil .,2 Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| |
Collapse
|
12
|
Feltrin C, Cooper CA, Mohamad-Fauzi N, Rodrigues VHV, Aguiar LH, Gaudencio-Neto S, Martins LT, Calderón CEM, Morais AS, Carneiro IS, Almeida TM, Silva ING, Rodrigues JL, Maga EA, Murray JD, Libório AB, Bertolini LR, Bertolini M. Systemic Immunosuppression by Methylprednisolone and Pregnancy Rates in Goats Undergoing the Transfer of Cloned Embryos. Reprod Domest Anim 2014; 49:648-656. [DOI: 10.1111/rda.12342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/03/2014] [Indexed: 01/30/2023]
Affiliation(s)
- C Feltrin
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - CA Cooper
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - N Mohamad-Fauzi
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - VHV Rodrigues
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LH Aguiar
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - S Gaudencio-Neto
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LT Martins
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - CEM Calderón
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - AS Morais
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - IS Carneiro
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - TM Almeida
- Ceará State University; Fortaleza CE Brazil
| | - ING Silva
- Ceará State University; Fortaleza CE Brazil
| | - JL Rodrigues
- Laboratory of Biotechnology of Reproduction and Embryology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - EA Maga
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - JD Murray
- Transgenics Lab; Department of Animal Science; University of California; Davis CA USA
| | - AB Libório
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - LR Bertolini
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| | - M Bertolini
- Molecular and Developmental Biology Lab; University of Fortaleza; Fortaleza CE Brazil
| |
Collapse
|
13
|
Meng L, Jia RX, Sun YY, Wang ZY, Wan YJ, Zhang YL, Zhong BS, Wang F. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats. Theriogenology 2014; 81:459-66. [DOI: 10.1016/j.theriogenology.2013.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
|
14
|
Kwong PJ, Nam HY, Wan Khadijah WE, Kamarul T, Abdullah RB. Comparison of in vitro developmental competence of cloned caprine embryos using donor karyoplasts from adult bone marrow mesenchymal stem cells vs ear fibroblast cells. Reprod Domest Anim 2014; 49:249-53. [PMID: 24456113 DOI: 10.1111/rda.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/07/2013] [Indexed: 01/04/2023]
Abstract
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs.
Collapse
Affiliation(s)
- P J Kwong
- Animal Biotechnology-Embryo Laboratory, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | | | | | | |
Collapse
|
15
|
Yuan YG, An L, Yu B, Song S, Zhou F, Zhang L, Gu Y, Yu M, Cheng Y. Expression of recombinant human alpha-lactalbumin in the milk of transgenic goats using a hybrid pomoter/enhancer. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:281031. [PMID: 24527256 PMCID: PMC3913203 DOI: 10.1155/2014/281031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
To improve nutrient content of goat milk, we describe the construction of a vector (pBLAC) containing a hybrid goat β -lactoglobulin (BLG) promoter/cytomegalovirus (CMV) enhancer. We also describe the generation of transgenic goats expressing rhLA by somatic cell nuclear transfer (SCNT). Of 334 one-cell stage embryos derived from three transgenic cell lines and 99 embryos derived from non-transgenic (NT) cells surgically transferred to the oviducts of 37 recipients, two recipients delivered two kids (2%) from the non-transfected line and five recipients delivered six kids (1.8%) from transgenic cell lines, three of which died within 2 days. Compared to the NT donor cells, transfection of donor cells does not negatively affect the development of nuclear transfer embryos into viable transgenic offspring. However, the clone efficiency in cell line number 1 was lower than that in numbers 2 and 3, and in the NT lines (0.9% versus 1.9% 2.4% and 2%; P < 0.05). Two transgenic cloned goats expressed rhLA in the milk at 0.1-0.9 mg/mL. The mammary gland-specific expression vector pBLAC with hybrid BLG/CMV can drive the hLA gene to express in vitro and in vivo. These data establish the basis for use of a hybrid promoter/enhancer strategy to produce rhLA transgenic goats.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liyou An
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Baoli Yu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shaozheng Song
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Feng Zhou
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liqing Zhang
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yinyin Gu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Minghui Yu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yong Cheng
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
16
|
Meng L, Wan Y, Sun Y, Zhang Y, Wang Z, Song Y, Wang F. Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes. PLoS One 2013; 8:e77798. [PMID: 24204972 PMCID: PMC3813735 DOI: 10.1371/journal.pone.0077798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/04/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. METHODOLOGY/PRINCIPAL FINDINGS Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. CONCLUSIONS/SIGNIFICANCE In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yanyan Sun
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yang Song
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Zhang GM, Gu CH, Zhang YL, Sun HY, Qian WP, Zhou ZR, Wan YJ, Jia RX, Wang LZ, Wang F. Age-associated changes in gene expression of goat oocytes. Theriogenology 2013; 80:328-36. [PMID: 23746875 DOI: 10.1016/j.theriogenology.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 11/19/2022]
Abstract
Oocyte aging severely decreases the quality of oocytes, which hampers fertilization and subsequent embryo development. In the present study, age-dependent molecular changes in goat oocytes were investigated. First, the quality of goat oocytes with various in vitro culture times (24, 30, 36, 48, and 60 hours) was evaluated on the basis of developmental rates of parthenogenetically activated embryos and apoptosis of cumulus cells (CCs). Second, relative gene expression of six genes (mitochondrial genes: PGC-1α and NRF-1; epigenetic modification genes: SNRPN and HAT1; mitotic spindle checkpoint protein: SMAD2; and hyaluronan synthase gene: HAS3) were analyzed during oocyte aging. Third, we further studied the changes of seven genes (PGC-1α and NRF-1; apoptotic-related genes: BAX and BCL2; hyaluronan synthase gene: HAS2; metabolism-related gene: STAR; and superoxide dismutase gene: SOD1) in CCs during oocyte aging. In these studies, the blastocyst rate gradually decreased and the number of apoptotic cells significantly increased as the culture time increased (P < 0.05). Moreover, relative gene expressions of PGC-1α, NRF-1 and SMAD2 significantly decreased from 24 to 36 hours (P < 0.05), whereas the levels of HAT1 and HAS3 slowly increased as culture was prolonged. Furthermore, the levels of PGC-1α, BCL2, HAS2 and SOD1 quickly reduced, and BAX significantly increased from 24 to 36 hours in aged CCs (P < 0.05). In conclusion, goat oocytes started to age at 30 hours in vitro culture, and gene expression patterns of oocytes and CCs significantly changed as the oocytes aged. Gene expression pattern changes in CCs may provide a convenient and effective way to detect oocyte aging without compromising oocyte integrity.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Center of Embryo Engineering and Technology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu J, Yang Z, Qiu M, Luo Y, Pang M, Wu Y, Zhang Y. Developmental potential of cloned goat embryos from an SSEA3(+) subpopulation of skin fibroblasts. Cell Reprogram 2013; 15:159-65. [PMID: 23441574 DOI: 10.1089/cell.2012.0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have demonstrated that skin stem cells expressing the pluripotency marker stage-specific embryonic antigen 3 (SSEA3) are easier to reprogram into induced pluripotent stem cells (iPSCs) than skin fibroblasts. Furthermore, it is widely speculated that the undifferentiated state may make stem cells more efficient donor cells for somatic cell nuclear transfer (SCNT). In this study, we isolated SSEA3(+) cells from goat skin fibroblast cells (SFCs) using fluorescence-activated cell sorting (FACS) and examined expression of pluripotency markers and in vitro development of cloned embryos following SCNT. Results showed that cell clusters from SSEA3(+) cells were consistently positive for alkaline phosphatase staining and pluripotency markers, Nanog, Oct4, Sox2, and SSEA3. The cleavage rate of cloned embryos derived from SSEA3(+) cells did not differ compared with SFCs (70.5±0.8% and 68.4±2.1%, respectively), but was significantly higher compared with SSEA3(-) cells (64.9±1.6%, p<0.05). The blastocyst rate was significantly increased in the SSEA3(+) cell group compared with the SFC and SSEA3(-) cell groups (30.3±1.2% vs. 21.2±0.9 and 19.0±1.0%, respectively, p<0.05). The quality of cloned blastocysts from SSEA3(+) cells was higher compared with SFCs and SSEA3(-) cells, based on total cell number and number of apoptotic cells per blastocyst. These findings suggest that using SSEA3(+) cells as donors for SCNT is beneficial for enhancing in vitro development and quality of cloned goat embryos.
Collapse
Affiliation(s)
- Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 2013; 79:225-33. [DOI: 10.1016/j.theriogenology.2012.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
|