1
|
Cinar B, Bollwein H, Siuda M, Lautner M, Leiding C, Malama E. Impact of bull age, sperm processing, and microclimatic conditions on the viability and DNA integrity of cryopreserved bovine sperm. Reprod Fertil Dev 2024; 36:RD23219. [PMID: 38713807 DOI: 10.1071/rd23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 05/09/2024] Open
Abstract
Context Seasonal microclimatic fluctuations can cause changes in sperm quality even in dairy bulls bred under temperate climate. These changes can vary between sires of different age and affect sperm freezability. Aims We aimed to evaluate the modulating effect of bull age and equilibration time before freezing on the seasonal pattern of sperm viability and DNA integrity post-thaw. Methods In the frame of systematic sperm quality control, we assessed the integrity of sperm plasma membrane and acrosome (PMAI) in 15,496 cryopreserved bovine batches, and the percentage of sperm with high DNA fragmentation index (%DFI) after 0h and 3h incubation at 38°C post-thaw (3h) in 3422 batches. Semen was equilibrated for 24h before freezing if collected on Monday or Wednesday and 72h if produced on Friday. We investigated the effect of season, bull age, equilibration, and temperature-humidity index (THI) on the day of semen collection on sperm traits using mixed-effects linear models. Key results PMAI and %DFI (0h and 3h) deteriorated with increasing THI. The effect of THI on %DFI was detected with a 30-day time lag. Seasonal fluctuations of sperm quality were similar between young, mature, and older sires. Prolonged equilibration did not affect PMAI but was linked to elevated %DFI (3h) in summer. Conclusions Extending equilibration from 24 to 72h is compatible with commercial standards of bovine sperm quality post-thaw; however, it could interfere with the seasonal pattern of the latter. Implications Systematic monitoring of bovine sperm quality enables the prompt detection of stress factors related to microclimate and semen processing.
Collapse
Affiliation(s)
- Burcu Cinar
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Matthias Lautner
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Straße 17-27, Neustadt a.d. Aisch 91413, Germany
| | - Claus Leiding
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Straße 17-27, Neustadt a.d. Aisch 91413, Germany
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| |
Collapse
|
2
|
Flowers WL. Factors affecting the production of quality ejaculates from boars. Anim Reprod Sci 2022; 246:106840. [PMID: 34518030 DOI: 10.1016/j.anireprosci.2021.106840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Production of acceptable quality ejaculates in boars is dependent upon the Sertoli cell population established before puberty and how effectively these cells function after sexual maturity. In general, factors affecting Sertoli cell mitosis tend to have a two-fold greater effect on sperm production compared with those affecting spermatogenesis. Birthweight is a reliable indicator of in utero testicular development and prepubertal growth rates are positively correlated with testis size and sperm production after sexual maturity. Colostrum intake and pre-weaning nutrition account for much of the variation associated with quality and quantity of ejaculates and represent opportunities to further enhance lifetime sperm production. Interactions between young boars and humans, shortly after weaning, have important effects on spermatogenesis after sexual maturity and need to be studied further. The seasonal effect on depression in semen quality is the most significant factor affecting production of acceptable quality ejaculates after puberty. Ambient temperatures, greater than those of the thermoneutral zone, have both acute and chronic effects that compromise all aspects of the male reproductive axis. Identification of genes associated with heat-tolerant phenotypes holds promise for addressing this challenge, especially in light of the current trend in global warming. Supplementation of vitamins, minerals and other compounds have positive effects on sperm production during periods in which other stressors, especially heat stress, are present and is an important mitigation strategy. Recent information on housing conditions and boar usage patterns indicate these cause relatively minor changes in sperm production, overall, but for some males can have significant, long-term effects.
Collapse
Affiliation(s)
- W L Flowers
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA.
| |
Collapse
|
3
|
Sengupta P, Roychoudhury S, Nath M, Dutta S. Oxidative Stress and Idiopathic Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:181-204. [DOI: 10.1007/978-3-030-89340-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 2020; 158:84-96. [PMID: 32947064 DOI: 10.1016/j.theriogenology.2020.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Heat stress (HS) occurs when temperatures exceed a physiological range, overwhelming compensatory mechanisms. Most mammalian testes are ∼4-5 °C cooler than core body temperature. Systemic HS or localized warming of the testes affects all types of testicular cells, although germ cells are more sensitive than either Sertoli or Leydig cells. Increased testicular temperature has deleterious effects on sperm motility, morphology and fertility, with effects related to extent and duration of the increase. The major consequence of HS on testis is destruction of germ cells by apoptosis, with pachytene spermatocytes, spermatids and epididymal sperm being the most susceptible. In addition to the involvement of various transcription factors, HS triggers production of reactive oxygen species (ROS), which cause apoptosis of germ cells and DNA damage. Effects of HS on testes can be placed in three categories: testicular cells, sperm quality, and ability of sperm to fertilize oocytes and support development. Various substances have been given to animals, or added to semen, in attempts to ameliorate heat stress-induced damage to testes and sperm. They have been divided into various groups according to their composition or activity, as follows: amino acids, antibiotics, antioxidant cocktails, enzyme inhibitors, hormones, minerals, naturally produced substances, phenolic compounds, traditional herbal medicines, and vitamins. Herein, we summarized those substances according to their actions to mitigate HS' three main mechanisms: oxidative stress, germ cell apoptosis, and sperm quality deterioration and testicular damage. The most promising approaches are to use substances that overcome these mechanisms, namely reducing testicular oxidative stress, reducing or preventing apoptosis and promoting recovery of testicular tissue and restoring sperm quality. Although some of these products have considerable promise, further studies are needed to clarify their ability to preserve or restore fertility following HS; these may include more advanced sperm analysis techniques, e.g. sperm epigenome or proteome, or direct assessment of fertilization and development, including in vitro fertilization or breeding data (either natural service or artificial insemination).
Collapse
|
5
|
Ahmadi E, Tahmasebian-Ghahfarokhi N, Nafar-Sefiddashti M, Sadeghi-Sefiddashti M, Hassanpour H. Impacts of in vitro thermal stress on ovine epididymal spermatozoa and the protective effect of β-mercaptoethanol as an antioxidant. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:43-51. [PMID: 32537106 PMCID: PMC7282219 DOI: 10.30466/vrf.2018.83527.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/24/2018] [Indexed: 11/01/2022]
Abstract
Most aspects of reproductive function including spermatogenesis, oocyte growth and maturation, early embryonic development, fetal and placental growth, and lactation can be affected by thermal stress. Furthermore, it has been shown that oxidative stress involves in the pathology of thermal stress. Therefore, the aim of this study was to investigate the impacts of thermal stress on the ovine mature epididymal spermatozoa extracted from testes of slaughtered rams in the presence or absence of an antioxidant. Epididymal spermatozoa were incubated at scrotal (32.00 ˚C), normal body (39.00 ˚C), and hyperthermic temperatures (41.00 ˚C) for 4 hr in the presence or absence of 1 mmol L-1 β-mercaptoethanol. The results demonstrated the high sensitivity of ram epididymal spermatozoa to the hyperthermic temperature at in vitro conditions. In comparison with scrotal temperature, quality parameters of spermatozoa were negatively affected by increase in temperature, as such in the spermatozoa incubated at hyperthermic temperature significant decrease was observed in the viability, DNA integrity and in the majority of motility parameters. Moreover, concentration of lipid peroxidation by-products, thiobarbituric acid reactive substances, were significantly increased. The findings showed that using antioxidant during incubation period had significant protective effect on the viability and motility of incubated spermatozoa not only at the hyperthermic temperature, but also at the scrotal and normal body temperatures. In conclusion the ovine epididymal spermatozoa were sensitive to in vitro thermal stress and it seems that this sensitivity was partly related to the oxidative stress.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Department of Cloning and Transgenic Animals, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Narges Tahmasebian-Ghahfarokhi
- Department of Cloning and Transgenic Animals, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Maryam Nafar-Sefiddashti
- Department of Cloning and Transgenic Animals, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Marzieh Sadeghi-Sefiddashti
- Department of Cloning and Transgenic Animals, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Hossein Hassanpour
- Department of Cloning and Transgenic Animals, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
6
|
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020; 77:93-113. [PMID: 31377843 PMCID: PMC11105059 DOI: 10.1007/s00018-019-03253-8] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.
Collapse
Affiliation(s)
- Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Přibilová M, Horký P, Urbánková L, Nevrkla P, Skládanka J. Influence of L-Carnitine Daily Supplement on Qualitative and Quantitative Ejaculate Indicators in Boars During the Summer Period. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Usuga A, Rojano B, Restrepo G. Effect of Seminal Plasma Components on the Quality of Fresh and Cryopreserved Stallion Semen. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Yan W, Kanno C, Oshima E, Kuzuma Y, Kim SW, Bai H, Takahashi M, Yanagawa Y, Nagano M, Wakamatsu JI, Kawahara M. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim Reprod Sci 2017; 185:195-204. [PMID: 28869111 DOI: 10.1016/j.anireprosci.2017.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/30/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Improving sperm motility and viability are major goals to improve efficiency in the poultry industry. In this study, the effects of supplemental dietary turmeric by-product (TBP) from commercial turmeric production on sperm motility, viability, and antioxidative status were examined in domestic fowl. Mature Rhode Island Red roosters were divided into two groups - controls (groupC) without TBP administration and test subjects (groupT) fed a basal diet supplemented with 0.8g of TBP/day in a temperature-controlled rearing facility (Experiment 1) and 1.6g/day under heat stress (Experiment 2) for 4 weeks. In Experiment 1, TBP dietary supplementation increased the sperm motility variables straight-line velocity, curvilinear velocity, and linearity based on a computer-assisted semen analysis, 2 weeks following TBP supplementation. In Experiment 2, using flow cytometry, sperm viability at 3 and 4 weeks following TBP supplementation was greater in Group T than C, and this increase was consistent with a reduction in reactive oxygen species (ROS) production at 2 and 4 weeks. The results of both experiments clearly demonstrate that dietary supplementation with TBP enhanced sperm motility in the controlled-temperature conditions as well as sperm viability, and reduced ROS generation when heat stress prevailed. Considering its potential application in a range of environments, TBP may serve as an economical and potent antioxidant to improve rooster fertility.
Collapse
Affiliation(s)
- Wenjing Yan
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiki Oshima
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukiko Kuzuma
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung Woo Kim
- National Institute of Animal Science, Animal Genetic Resources Research Center, Namwon, 55717, South Korea
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Wakamatsu
- Laboratory of Applied Food Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
10
|
Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4650182. [PMID: 28164122 PMCID: PMC5253172 DOI: 10.1155/2017/4650182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be prescribed. Infection, inflammation, and/or increased oxidative stress often require a specific treatment with antibiotics, anti-inflammatory drugs, and/or antioxidants. Combined therapies can contribute to improve sperm quality.
Collapse
|