1
|
Chen M, Zhao Y, Ji H, Li L, Liu H, Wang S, Zhang D, Yin J, Wang J, Zhang X. Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota-Host Metabolites Interaction during Early Pregnancy. Antioxidants (Basel) 2023; 13:8. [PMID: 38275628 PMCID: PMC10812749 DOI: 10.3390/antiox13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Ying Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Ren C, Li Q, Luo T, Betti M, Wang M, Qi S, Wu L, Zhao L. Antioxidant Polyphenols from Lespedeza bicolor Turcz. Honey: Anti-Inflammatory Effects on Lipopolysaccharide-Treated RAW 264.7 Macrophages. Antioxidants (Basel) 2023; 12:1809. [PMID: 37891888 PMCID: PMC10604429 DOI: 10.3390/antiox12101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Although the honey produced by Lespedeza bicolor Turcz. is precious because of its medicinal value, its pharmacological mechanism is still unclear. Here, its anti-inflammatory and antioxidant functions on lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages were analyzed using targeted and non-targeted metabolomics. Results showed that twelve polyphenols were identified in L. bicolor honey using UHPLC-QQQ-MS/MS. L. bicolor honey extract could scavenge the free radicals DPPH• and ABTS+ and reduce Fe3+. Furthermore, pretreatment with L. bicolor honey extract significantly decreased NO production; suppressed the expression of COX-2, IL-10, TNF-α, and iNOS; and upregulated HO-1's expression in the cells with LPS application. UHPLC-Q-TOF-MS/MS-based metabolomics results revealed that L. bicolor honey extract could protect against inflammatory damage caused by LPS through the reduced activation of sphingolipid metabolism and necroptosis pathways. These findings demonstrate that L. bicolor honey possesses excellent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Teng Luo
- Institute of NBC Defence, Beijing 102205, China;
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| |
Collapse
|
3
|
Lee SE, Lim ES, Yoon JW, Park HJ, Kim SH, Lee HB, Han DH, Kim EY, Park SP. Cell starvation regulates ceramide-induced autophagy in mouse preimplantation embryo development. Cells Dev 2023; 175:203859. [PMID: 37271244 DOI: 10.1016/j.cdev.2023.203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Ceramide induces autophagy upon starvation via downregulation of nutrient transporters. To elucidate the mechanism by which starvation regulates autophagy in mouse embryos, the present study investigated nutrient transporter expression and the effect of C2-ceramide on in vitro embryo development, apoptosis, and autophagy. The transcript levels of the glucose transporters Glut1 and Glut3 were high at the 1- and 2-cell stages, and gradually decreased at the morula and blastocyst (BL) stages. Similarly, expression of the amino acid transporters L-type amino transporter-1 (LAT-1) and 4F2 heavy chain (4F2hc) gradually decreased from the zygote to the BL stage. Upon ceramide treatment, expression of Glut1, Glut3, LAT-1, and 4F2hc was significantly reduced at the BL stage, while expression of the autophagy-related genes Atg5, LC3, and Gabarap and synthesis of LC3 were significantly induced. Ceramide-treated embryos exhibited significantly reduced developmental rates and total cell numbers per blastocyst, and increased levels of apoptosis and expression of Bcl2l1 and Casp3 at the BL stage. Ceramide treatment significantly decreased the average mitochondrial DNA copy number and mitochondrial area at the BL stage. In addition, ceramide treatment significantly decreased mTOR expression. These results suggest that ceramide-induced autophagy promotes apoptosis by following downregulation of nutrient transporters during mouse embryogenesis.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
4
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Silva T, Santos E, Annes K, Soares C, Leite R, Lima C, Milazzotto M. Morphokinetic-related response to stress in individually cultured bovine embryos. Theriogenology 2016; 86:1308-17. [DOI: 10.1016/j.theriogenology.2016.04.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
6
|
Fei H, Hou J, Wu Z, Zhang L, Zhao H, Dong X, Chen Y. Plasma metabolomic profile and potential biomarkers for missed abortion. Biomed Chromatogr 2016; 30:1942-1952. [PMID: 27229294 DOI: 10.1002/bmc.3770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
A missed abortion (MA) is an in utero death of the embryo or fetus before the 20th week of gestation with retained products of conception, and this condition is currently common in China. In order to discover novel biomarkers for MA, ultrahigh performance liquid chromatography was applied to study plasma metabolite profiles for 33 patients with MA and 29 control subjects. Thirty-seven differential plasma metabolites were found to discriminate between the two groups in the initial cohort (15 subjects with MA and 15 healthy controls). The feasibility of using these potential biomarkers to predict MA was further evaluated in the validation cohort (18 subjects with MA and 14 healthy controls) and 15 had an area under the receiver operating characteristic curve of >0.80, making them satisfactory. Tryptophan metabolism and sphingolipid metabolism were identified as important potential target pathways for MA using metabolic pathway impact analysis. Furthermore, three of the 15 satisfactory metabolites (glyceric acid, indole and sphingosine) were combined to establish a predictive model with 100% sensitivity and 100% specificity in the validation cohort. Taken together, these results suggest that MA results in significant disturbance of metabolism and those various novel biomarkers have satisfactory diagnostic and predictive power for MA.
Collapse
Affiliation(s)
- He Fei
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Jiebin Hou
- Second Military Medical University, Shanghai, People's Republic of China
| | - Zhenghong Wu
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Liwen Zhang
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Hongxia Zhao
- Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Dong
- Second Military Medical University, Shanghai, People's Republic of China
| | - Yaping Chen
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Wydooghe E, Vandaele L, Heras S, De Sutter P, Deforce D, Peelman L, De Schauwer C, Van Soom A. Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups? Biol Rev Camb Philos Soc 2015; 92:505-520. [PMID: 26608222 DOI: 10.1111/brv.12241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023]
Abstract
In the absence of the maternal genital tract, preimplantation embryos can develop in vitro in culture medium where all communication with the oviduct or uterus is absent. In several mammalian species, it has been observed that embryos cultured in groups thrive better than those cultured singly. Here we argue that group-cultured embryos are able to promote their own development in vitro by the production of autocrine embryotropins that putatively serve as a communication tool. The concept of effective communication implies an origin, a signalling agent, and finally a recipient that is able to decode the message. We illustrate this concept by demonstrating that preimplantation embryos are able to secrete autocrine factors in several ways, including active secretion, passive outflow, or as messengers bound to a molecular vehicle or transported within extracellular vesicles. Likewise, we broaden the traditional view that inter-embryo communication is dictated mainly by growth factors, by discussing a wide range of other biochemical messengers including proteins, lipids, neurotransmitters, saccharides, and microRNAs, all of which can be exchanged among embryos cultured in a group. Finally, we describe how different classes of messenger molecules are decoded by the embryo and influence embryo development by triggering different pathways. When autocrine embryotropins such as insulin-like growth factor-I (IGF-I) or platelet activating factor (PAF) bind to their appropriate receptor, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway will be activated which is important for embryo survival. On the other hand, the mitogen-activated protein kinase (MAPK) pathway is activated when compounds such as hyaluronic acid and serotonin bind to their respective receptors, thereby acting as growth factors. By activating the peroxisome-proliferator-activated receptor family (PPAR) pathway, lipophilic autocrine factors such as prostaglandins or fatty acids have both survival and anti-apoptotic functions. In conclusion, considering different types of messenger molecules simultaneously will be crucial to understanding more comprehensively how embryos communicate with each other in group-culture systems. This approach will assist in the development of novel media for single-embryo culture.
Collapse
Affiliation(s)
- Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Leen Vandaele
- Animal Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), B-9090, Melle, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Petra De Sutter
- Department of Reproductive Medicine, University Hospital, Ghent University, B-9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000, Ghent, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| |
Collapse
|
8
|
Type II anti-CD20 mAb-induced lysosome mediated cell death is mediated through a ceramide-dependent pathway. Biochem Biophys Res Commun 2015; 457:572-7. [PMID: 25603047 DOI: 10.1016/j.bbrc.2015.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 11/22/2022]
Abstract
In the past decade, monoclonal antibodies (mAbs) have revolutionized the treatment of non-Hodgkin lymphomas (NHLs). Although Fc-dependent mechanisms of mAb-mediated tumor clearance have been extensively studied, the ability of mAbs to directly evoke programmed cell death (PCD) and the underlying mechanisms involved remain unclear. It is well established that type II anti-CD20 mAb (Tositumomab) potently evoked PCD through a caspases-independent, lysosome-mediated process, which is related to homotypic adhesion (HA) in NHL cell lines. Herein, we reveal that the induction of ceramide generation by anti-CD20 mAbs directly correlates with their ability to induce PCD. The inhibition of ceramide abrogated Tositumomab-induced PCD indicating that ceramide is required for the execution of cell death. Further experimental results revealed that ceramide was generated downstream of mAb-induced HA and upstream of lysosome leakage. These findings provide further insights into a previously unrecognized role for ceramide generation in mediating PCD evoked by type II anti-CD20 mAbs in Burkitt's lymphoma cells. This newly characterized cell death pathway may potentially be exploited to eliminate malignant cells.
Collapse
|
9
|
Increased glucocerebrosidase expression and activity in preeclamptic placenta. Placenta 2014; 36:160-9. [PMID: 25552189 DOI: 10.1016/j.placenta.2014.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Lysosomal glucosidase beta acid (GBA) deficiency is inherent to Gaucher disease, Parkinsonism and Lewy-body dementia. Increased GBA expression has never been associated with human disease. We describe increased GBA expression and activity in placenta from preeclamptic pregnancies. METHODS 112 placenta biopsies were available for qPCR, analysis of GBA gene expression and activity. Microanalysis was performed on 20 placenta samples. Alternatively spliced placental GBA transcripts were cloned, expressed in HEK293 cells and analyzed by Western blot and activity assay. RESULTS GBA is expressed in the syncytiotrophoblast layer of human placenta already at 5 weeks of gestation. We identified five novel GBA transcripts in placenta that enzymatically inactive when expressed in HEK293 cells. Both GBA RNA expression and enzymatic activity are upregulated in preeclamptic placenta. Microarray analysis of 20 placenta tissues identified 158 genes co-regulating with GBA expression and gene enrichment analysis highlights lysosomal function. In our micro-array data GBA expression does not correlate with FLT1 expression, currently the most powerful marker for preeclampsia. There are 89 transcripts that are negatively correlated with GBA expression of which BMP4 and TFEB are interesting as they are essential to early placenta function. DISCUSSION Although very speculative, we hypothesize that increased GBA expression might relate to placentation through decreased BMP4 signaling or vascularization through downregulation of TFEB. Ceramide, the product of hydrolysis of glucosylceramide by GBA and involved in the regulation of cell differentiation, survival and apoptosis, is another putative candidate linking increased GBA activity to preeclampsia. Both pathways merit further investigation.
Collapse
|
10
|
Cagnone G, Sirard MA. The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology 2013; 81:712-22.e1-3. [PMID: 24439163 DOI: 10.1016/j.theriogenology.2013.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/27/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
In vitro culture has a detrimental impact on early embryonic development, and serum addition to IVC is recognized to compromise blastocyst quality. Particularly, serum fatty acids affect embryonic lipid composition and reduce cryopreservation survival. To understand the molecular pathways of serum-induced embryonic stress, this study examined the early development of bovine embryos produced in different protein- or lipid-supplemented culture media: BSA alone (control), BSA + serum lipid fraction (SELF), delipidated serum and total serum. These protein-lipid treatments were applied from the eight to 16 cell stages to the blastocyst stage. As planned, SELF treatment increased the fatty acid concentration in the medium compared with control medium but did not induce embryo toxicity. However, microarray comparison between blastocysts cultured in BSA without or with SELF revealed differential transcriptomic profile associated with ceramide-induced oxidative stress and inflammation. Moreover, the SELF treatment had a significant impact on genes involved in cholesterol metabolism (LDLR, HMGCS1), with the potential upstream control of the transcription factors SREBP and PPARA, two major regulators of cholesterol metabolism. In addition, the expression of pluripotence-related genes (APEX, CLDN6) was downregulated in blastocysts subjected to either SELF or total serum. Taken together, these results illustrate how the early embryonic transcriptome responds to increased lipid exposure through an inflammatory and metabolic signature.
Collapse
Affiliation(s)
- Gael Cagnone
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada.
| |
Collapse
|
11
|
Abstract
Sphingosine-1-phosphate (S1P) plays crucial roles in the regulation of cell growth, proliferation, differentiation, cell survival, migration, and angiogenesis. In the reproductive system, S1P protects mammalian germ cells from irradiation or chemotherapy-induced cell death in vivo and in vitro. Moreover, S1P could improve the survival rate of thawed ovary and transplanted ovary. Furthermore, S1P could improve the developmental potential of oocyte and preimplantation embryo. In conclusion, S1P plays important roles in reproduction.
Collapse
Affiliation(s)
- Lei Guo
- 1Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | |
Collapse
|